Brunn-Minkowski inequalities for path spaces on Riemannian surfaces

Rotem Assouline

Weizmann Institute of Science

Joint with Bo'az Klartag

The Brunn Minkowki inequality

Definition (Minkowski sum)

$A, B \subseteq \mathbb{R}^{n}$

$$
\begin{gathered}
A+B:=\{a+b \mid a \in A, b \in B\} \\
\lambda A:=\{\lambda a \mid a \in A\}
\end{gathered}
$$

The Brunn Minkowki inequality

Definition (Minkowski sum)

$A, B \subseteq \mathbb{R}^{n}$

$$
\begin{gathered}
A+B:=\{a+b \mid a \in A, b \in B\} \\
\lambda A
\end{gathered}=\{\lambda a \mid a \in A\} .
$$

Theorem (Brunn-Minkowski)
$A, B \subseteq \mathbb{R}^{n}$ nonempty Borel sets, $0<\lambda<1$.
$\operatorname{Vol}_{n}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \cdot \operatorname{Vol}_{n}(A)^{1 / n}+\lambda \cdot \operatorname{Vol}_{n}(B)^{1 / n}$.

The Brunn Minkowski inequality - Riemannian setting

Definition (Riemannian Minkowski average)

(M, g) Riemannian Manifold, $\operatorname{dim} M=n, A, B \subseteq M, 0<\lambda<1$,
$[A: B]_{\lambda}:=\{\gamma(\lambda) \mid \gamma$ minimizing geodesic $, \gamma(0) \in A, \gamma(1) \in B\}$.

The Brunn Minkowski inequality - Riemannian setting

Definition (Riemannian Minkowski average)

(M, g) Riemannian Manifold, $\operatorname{dim} M=n, A, B \subseteq M, 0<\lambda<1$,
$[A: B]_{\lambda}:=\{\gamma(\lambda) \mid \gamma$ minimizing geodesic , $\gamma(0) \in A, \gamma(1) \in B\}$.
e.g. $\lambda=1 / 2$: all midpoints of minimizing geodesics joining A, B.

The Brunn Minkowski inequality - Riemannian setting

Definition (Riemannian Minkowski average)

(M, g) Riemannian Manifold, $\operatorname{dim} M=n, A, B \subseteq M, 0<\lambda<1$,
$[A: B]_{\lambda}:=\{\gamma(\lambda) \mid \gamma$ minimizing geodesic $, \gamma(0) \in A, \gamma(1) \in B\}$.
e.g. $\lambda=1 / 2$: all midpoints of minimizing geodesics joining A, B.

Theorem (Cordero-Erausquin, McCann, Schmuckenschläeger '01, Sturm '06)
(M, g) complete Riemannian Manifold, $\operatorname{Ric}_{g} \geq 0$, $A, B \subseteq M$ Borel, nonempty, $0<\lambda<1, \Longrightarrow$

$$
\operatorname{Vol}_{g}\left([A: B]_{\lambda}\right)^{1 / n} \geq(1-\lambda) \cdot \operatorname{Vol}_{g}(A)^{1 / n}+\lambda \cdot \operatorname{Vol}_{g}(B)^{1 / n}
$$

Brunn - Minkowski on the Sphere

Brunn-Minkowski on the hyperbolic plane

$$
\begin{gathered}
p, q \in \mathbf{H}, d(p, q)=\ell, \quad A:=B_{1}(p), B:=B_{1}(q) . \\
\text { Area }\left([A: B]_{1 / 2}\right) \xrightarrow{\ell \rightarrow \infty} 0
\end{gathered}
$$

Brunn-Minkowski on the hyperbolic plane

Brunn-Minkowski on the hyperbolic plane

Brunn-Minkowski on the hyperbolic plane

geodesics

horocycles

Horocycles

- Disc model: circles tangent to the boundary.

Horocycles

- Disc model: circles tangent to the boundary.
- Upper half plane model: circles tangent to the boundary, horizontal lines.

Horocycles

- Disc model: circles tangent to the boundary.
- Upper half plane model: circles tangent to the boundary, horizontal lines.
- Limits of circles passing through a fixed point, as their center tends to infinity in some direction.

Horocycles

- Disc model: circles tangent to the boundary.
- Upper half plane model: circles tangent to the boundary, horizontal lines.
- Limits of circles passing through a fixed point, as their center tends to infinity in some direction.
- Curves of constant geodesic curvature 1 .

Horocycles

- Disc model: circles tangent to the boundary.
- Upper half plane model: circles tangent to the boundary, horizontal lines.
- Limits of circles passing through a fixed point, as their center tends to infinity in some direction.
- Curves of constant geodesic curvature 1 .
- Every two points in \mathbf{H} are joined by two horocycle arcs.

Horocycles

- Disc model: circles tangent to the boundary.
- Upper half plane model: circles tangent to the boundary, horizontal lines.
- Limits of circles passing through a fixed point, as their center tends to infinity in some direction.
- Curves of constant geodesic curvature 1 .
- Every two points in \mathbf{H} are joined by two horocycle arcs.
- Through every tangent vector there are two horocycle arcs.

0 and

Oriented horocycles

We fix an orientation of \mathbf{H} and consider only constant-speed oriented horocycles.

Oriented horocycles

We fix an orientation of \mathbf{H} and consider only constant-speed oriented horocycles.

- Disc model: counterclockwise constant-speed circles tangent to the boundary.

Oriented horocycles

We fix an orientation of \mathbf{H} and consider only constant-speed oriented horocycles.

- Disc model: counterclockwise constant-speed circles tangent to the boundary.
- Upper half plane model: counterclockwise constant-speed circles tangent to the boundary, constant-speed horizontal lines in the positive direction.

Oriented horocycles

We fix an orientation of \mathbf{H} and consider only constant-speed oriented horocycles.

- Disc model: counterclockwise constant-speed circles tangent to the boundary.
- Upper half plane model: counterclockwise constant-speed circles tangent to the boundary, constant-speed horizontal lines in the positive direction.
- Through every two points in \mathbf{H} there exists a unique unit-speed oriented horocycle.

Oriented horocycles

We fix an orientation of \mathbf{H} and consider only constant-speed oriented horocycles.

- Disc model: counterclockwise constant-speed circles tangent to the boundary.
- Upper half plane model: counterclockwise constant-speed circles tangent to the boundary, constant-speed horizontal lines in the positive direction.
- Through every two points in \mathbf{H} there exists a unique unit-speed oriented horocycle.
- Through every tangent vector there exists a unique constant-speed oriented horocycle.

Oriented horocycles

Horocyclic Brunn-Minkowski

Definition

$A, B \subseteq \mathbf{H}, 0<\lambda<1$

$$
[A: B]_{\lambda}^{h}:=\{\gamma(\lambda) \mid \gamma \text { horocycle, } \gamma(0) \in A, \gamma(1) \in B\}
$$

Horocyclic Brunn-Minkowski

Horocyclic Brunn-Minkowski

Definition

$A, B \subseteq \mathbf{H}, 0<\lambda<1$

$$
[A: B]_{\lambda}^{h}:=\{\gamma(\lambda) \mid \gamma \text { horocycle, } \gamma(0) \in A, \gamma(1) \in B\}
$$

Theorem (A., Klartag '22)

$A, B \subseteq \mathbf{H}$ Borel, nonempty, $0<\lambda<1$,

$$
\operatorname{Area}\left([A: B]_{\lambda}^{h}\right)^{1 / 2} \geq(1-\lambda) \cdot \operatorname{Area}(A)^{1 / 2}+\lambda \cdot \operatorname{Area}(B)^{1 / 2}
$$

When A, B are concentric discs, or if A or B is a singleton, equality holds.

Horocyclic Borell-Brascamp-Lieb inquality

Theorem (A., Klartag '22)

Let $f, g, h: \mathbf{H} \rightarrow[0, \infty)$ be measurable, with f and g integrable with a non-zero integral. Let $0<\lambda<1$ and $p \in[-1 / 2,+\infty]$. Assume that for any $x, y \in \mathbf{H}$ with $f(x) g(y)>0$,

$$
\begin{gathered}
h\left([x: y]_{\lambda}^{h}\right) \geq M_{p}(f(x), g(y) ; \lambda), \\
M_{p}(a, b ; \lambda)=\left\{\begin{array}{cc}
\left((1-\lambda) a^{p}+\lambda b^{p}\right)^{1 / p} & p \notin\{0, \pm \infty\} \\
a^{1-\lambda} b^{\lambda} & p=0 \\
\max \{a, b\} & p=+\infty \\
\min \{a, b\} & p=-\infty .
\end{array}\right.
\end{gathered}
$$

Then

$$
\int_{\mathbf{H}} h \geq M_{p /(1+2 p)}\left(\int_{\mathbf{H}} f, \int_{\mathbf{H}} g ; \lambda\right) .
$$

Path spaces

Let M be a smooth n-dimensional manifold. A path space on M is a collection Γ of smooth parametrized curves, such that

Path spaces

Let M be a smooth n-dimensional manifold. A path space on M is a collection Γ of smooth parametrized curves, such that

- Each $\gamma \in \Gamma$ is defined on an open interval $I_{\gamma} \subseteq \mathbb{R}$.

Path spaces

Let M be a smooth n-dimensional manifold. A path space on M is a collection Γ of smooth parametrized curves, such that

- Each $\gamma \in \Gamma$ is defined on an open interval $I_{\gamma} \subseteq \mathbb{R}$.
- For every nonzero $v \in T M$ there is a unique curve $\gamma_{v} \in \Gamma$ with $\dot{\gamma}_{v}(0)=v$. The curve γ_{v} and the endpoints of $I_{\gamma_{v}}$ depend smoothly on v.

Path spaces

Let M be a smooth n-dimensional manifold. A path space on M is a collection Γ of smooth parametrized curves, such that

- Each $\gamma \in \Gamma$ is defined on an open interval $I_{\gamma} \subseteq \mathbb{R}$.
- For every nonzero $v \in T M$ there is a unique curve $\gamma_{v} \in \Gamma$ with $\dot{\gamma}_{v}(0)=v$. The curve γ_{v} and the endpoints of $I_{\gamma_{v}}$ depend smoothly on v.
- If $\gamma \in \Gamma$ then $\gamma^{t_{0}, \lambda} \in \Gamma$ for every $t_{0} \in \mathbb{R}$ and $\lambda>0$, where $\gamma^{t_{0}, \lambda}(t)=\gamma\left(\lambda\left(t-t_{0}\right)\right)$ and $I_{\gamma^{t_{0}, \lambda}}=\lambda^{-1} I_{\gamma}+t_{0}$.

Path spaces

Let M be a smooth n-dimensional manifold. A path space on M is a collection Γ of smooth parametrized curves, such that

- Each $\gamma \in \Gamma$ is defined on an open interval $I_{\gamma} \subseteq \mathbb{R}$.
- For every nonzero $v \in T M$ there is a unique curve $\gamma_{v} \in \Gamma$ with $\dot{\gamma}_{v}(0)=v$. The curve γ_{v} and the endpoints of $I_{\gamma_{v}}$ depend smoothly on v.
- If $\gamma \in \Gamma$ then $\gamma^{t_{0}, \lambda} \in \Gamma$ for every $t_{0} \in \mathbb{R}$ and $\lambda>0$, where $\gamma^{t_{0}, \lambda}(t)=\gamma\left(\lambda\left(t-t_{0}\right)\right)$ and $I_{\gamma^{t_{0}, \lambda}}=\lambda^{-1} I_{\gamma}+t_{0}$.
- For every $p, q \in M$ there exists at least one path $\gamma \in \Gamma$ such that $\gamma(t)=p$ and $\gamma\left(t^{\prime}\right)=q$ for some $t<t^{\prime}$.

Path spaces

Let M be a smooth n-dimensional manifold. A path space on M is a collection Γ of smooth parametrized curves, such that

- Each $\gamma \in \Gamma$ is defined on an open interval $I_{\gamma} \subseteq \mathbb{R}$.
- For every nonzero $v \in T M$ there is a unique curve $\gamma_{v} \in \Gamma$ with $\dot{\gamma}_{v}(0)=v$. The curve γ_{v} and the endpoints of $I_{\gamma_{v}}$ depend smoothly on v.
- If $\gamma \in \Gamma$ then $\gamma^{t_{0}, \lambda} \in \Gamma$ for every $t_{0} \in \mathbb{R}$ and $\lambda>0$, where $\gamma^{t_{0}, \lambda}(t)=\gamma\left(\lambda\left(t-t_{0}\right)\right)$ and $I_{\gamma^{t_{0}, \lambda}}=\lambda^{-1} I_{\gamma}+t_{0}$.
- For every $p, q \in M$ there exists at least one path $\gamma \in \Gamma$ such that $\gamma(t)=p$ and $\gamma\left(t^{\prime}\right)=q$ for some $t<t^{\prime}$.
- Γ is projectively Finsler - metrizable.

Minkowski averaging with respect to a path space

Definition

Γ Path space on M,
$A, B \subseteq M, 0<\lambda<1$

$$
[A: B]_{\lambda}^{\Gamma}:=\{\gamma(\lambda) \mid \gamma \in \Gamma, \gamma(0) \in A, \gamma(1) \in B\}
$$

Minkowski averaging with respect to a path space

Definition

Γ Path space on M,

$$
A, B \subseteq M, 0<\lambda<1
$$

$$
[A: B]_{\lambda}^{\Gamma}:=\{\gamma(\lambda) \mid \gamma \in \Gamma, \gamma(0) \in A, \gamma(1) \in B\}
$$

Problem

Suppose that M is endowed with a measure μ with a smooth density. Under what conditions on Γ, μ and N does the above operation satisfy the Brunn-Minkowski inequality

$$
\mu\left([A: B]_{\lambda}^{\Gamma}\right)^{1 / N} \geq(1-\lambda) \cdot \mu(A)^{1 / N}+\lambda \cdot \mu(B)^{1 / N}
$$

for every A, B Borel, nonempty and every $0<\lambda<1$?

Let (M, g) be a Riemannian surface $(\operatorname{dim} M=2)$ and let Γ be a path space on M consisting of constant-speed curves.

Theorem (A. '22+)

Let (M, g) be a Riemannian surface $(\operatorname{dim} M=2)$ and let Γ be a path space on M consisting of constant-speed curves.

- Suppose that for every $A, B \subseteq U$ Borel, non empty,
(夫) $\operatorname{Vol}_{g}\left([A: B]_{\lambda}^{\Gamma}\right)^{1 / 2} \geq(1-\lambda) \cdot \operatorname{Vol}_{g}(A)^{1 / 2}+\lambda \cdot \operatorname{Vol}_{g}(B)^{1 / 2}$.

Then there exists a function $\kappa: M \rightarrow \mathbb{R}$ such that Γ is the set of solutions to the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa(\dot{\gamma})|\dot{\gamma}| \dot{\gamma}^{\perp}$, and

$$
K+\kappa^{2}-|\nabla \kappa|_{g} \geq 0
$$

Theorem (A. '22+)

Let (M, g) be a Riemannian surface $(\operatorname{dim} M=2)$ and let Γ be a path space on M consisting of constant-speed curves.

- Suppose that for every $A, B \subseteq U$ Borel, non empty,
(夫) $\operatorname{Vol}_{g}\left([A: B]_{\lambda}^{\Gamma}\right)^{1 / 2} \geq(1-\lambda) \cdot \operatorname{Vol}_{g}(A)^{1 / 2}+\lambda \cdot \operatorname{Vol}_{g}(B)^{1 / 2}$.
Then there exists a function $\kappa: M \rightarrow \mathbb{R}$ such that Γ is the set of solutions to the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa(\dot{\gamma})|\dot{\gamma}| \dot{\gamma}^{\perp}$, and

$$
K+\kappa^{2}-|\nabla \kappa|_{g} \geq 0
$$

- Suppose that Γ has the form above. Then (*) holds locally: for every $p \in M$ there exists a neighborhood $U \ni p$ such that (\star) holds for every $A, B \subseteq U$ Borel, nonempty.

Let (M, g) be a Riemannian surface ($\operatorname{dim} M=2$), let Γ be a path space on M consisting of constant-speed curves, and let $d \mu=e^{-V} d \mathrm{Vol}_{g}$ be a smooth density on M.

Theorem (A. '22+)

Let (M, g) be a Riemannian surface ($\operatorname{dim} M=2$), let Γ be a path space on M consisting of constant-speed curves, and let $d \mu=e^{-V} d \mathrm{Vol}_{g}$ be a smooth density on M.

- Suppose that for some $N>2$, and for every $A, B \subseteq M$ Borel, nonempty,

$$
(\star) \quad \mu\left([A: B]_{\lambda}^{\Gamma}\right)^{1 / N} \geq(1-\lambda) \cdot \mu(A)^{1 / N}+\lambda \cdot \mu(B)^{1 / N} .
$$

Then there exists a function $\kappa: M \rightarrow \mathbb{R}$ such that Γ is the set of solutions to the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa(\dot{\gamma})|\dot{\gamma}| \dot{\gamma}^{\perp}$, and
$\left(K+\kappa^{2}\right) g+$ Hess $V-(N-2)^{-1} d V \otimes d V+e^{V} \sqrt{g} \star d\left(\kappa e^{-V}\right) \geq 0$

Theorem (A. '22+)

Let (M, g) be a Riemannian surface ($\operatorname{dim} M=2$), let Γ be a path space on M consisting of constant-speed curves, and let $d \mu=e^{-V} d \mathrm{Vol}_{g}$ be a smooth density on M.

- Suppose that for some $N>2$, and for every $A, B \subseteq M$ Borel, nonempty,

$$
(\star) \quad \mu\left([A: B]_{\lambda}^{\Gamma}\right)^{1 / N} \geq(1-\lambda) \cdot \mu(A)^{1 / N}+\lambda \cdot \mu(B)^{1 / N} .
$$

Then there exists a function $\kappa: M \rightarrow \mathbb{R}$ such that Γ is the set of solutions to the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa(\dot{\gamma})|\dot{\gamma}| \dot{\gamma}^{\perp}$, and

$$
\left(K+\kappa^{2}\right) g+\operatorname{Hess} V-(N-2)^{-1} d V \otimes d V+e^{V} \sqrt{g} \star d\left(\kappa e^{-V}\right) \geq 0
$$

- Suppose that Γ has the form above. Then (\star) holds locally.

Needle decomposition

Strategy: localization ("needle decomposition") - Klartag '14, Payne - Weinberger '60, Gromov - Milman '87, Lovasz Simonovitz '93.

Needle decomposition

Strategy: localization ("needle decomposition") - Klartag '14, Payne - Weinberger '60, Gromov - Milman '87, Lovasz Simonovitz '93.
Fix $A, B \in \mathbf{H}$ Borel, nonempty. Suppose we could find a disintegration of measure:

$$
\operatorname{Area}(S)=\int_{\Lambda} \mu_{\gamma}(S) d \nu(S) \quad \text { for all } S \subseteq \mathbf{H} \text { Borel, }
$$

where

Needle decomposition

Strategy: localization ("needle decomposition") - Klartag '14, Payne - Weinberger '60, Gromov - Milman '87, Lovasz Simonovitz '93.
Fix $A, B \in \mathbf{H}$ Borel, nonempty. Suppose we could find a disintegration of measure:

$$
\operatorname{Area}(S)=\int_{\Lambda} \mu_{\gamma}(S) d \nu(S) \quad \text { for all } S \subseteq \mathbf{H} \text { Borel, }
$$

where

1. Λ is a collection of disjoint horocycle arcs,

Needle decomposition

Strategy: localization ("needle decomposition") - Klartag '14, Payne - Weinberger '60, Gromov - Milman '87, Lovasz Simonovitz '93.
Fix $A, B \in \mathbf{H}$ Borel, nonempty. Suppose we could find a disintegration of measure:

$$
\operatorname{Area}(S)=\int_{\Lambda} \mu_{\gamma}(S) d \nu(S) \quad \text { for all } S \subseteq \mathbf{H} \text { Borel, }
$$

where

1. Λ is a collection of disjoint horocycle arcs,
2. Each μ_{γ} is a measure supported on the curve γ ("needle"),

Needle decomposition

Strategy: localization ("needle decomposition") - Klartag '14, Payne - Weinberger '60, Gromov - Milman '87, Lovasz Simonovitz '93.
Fix $A, B \in \mathbf{H}$ Borel, nonempty. Suppose we could find a disintegration of measure:

$$
\operatorname{Area}(S)=\int_{\Lambda} \mu_{\gamma}(S) d \nu(S) \quad \text { for all } S \subseteq \mathbf{H} \text { Borel, }
$$

where

1. Λ is a collection of disjoint horocycle arcs,
2. Each μ_{γ} is a measure supported on the curve γ ("needle"),
3. ν is a measure on Λ.

Needle decomposition

$$
\operatorname{Area}\left([A: B]_{\lambda}^{h}\right)=\int_{\Lambda} \mu_{\gamma}\left([A: B]_{\lambda}^{h}\right) d \nu(\gamma)
$$

Needle decomposition

$$
\begin{aligned}
\operatorname{Area}\left([A: B]_{\lambda}^{h}\right) & =\int_{\Lambda} \mu_{\gamma}\left([A: B]_{\lambda}^{h}\right) d \nu(\gamma) \\
& \stackrel{?}{\geq} \int_{\Lambda}\left((1-\lambda) \cdot \mu_{\gamma}(A)^{1 / 2}+\lambda \cdot \mu_{\gamma}(B)^{1 / 2}\right)^{2} d \nu(\gamma)
\end{aligned}
$$

Needle decomposition

$$
\begin{aligned}
\operatorname{Area}\left([A: B]_{\lambda}^{h}\right) & =\int_{\Lambda} \mu_{\gamma}\left([A: B]_{\lambda}^{h}\right) d \nu(\gamma) \\
& ? \\
& \geq \int_{\Lambda}\left((1-\lambda) \cdot \mu_{\gamma}(A)^{1 / 2}+\lambda \cdot \mu_{\gamma}(B)^{1 / 2}\right)^{2} d \nu(\gamma) \\
& =\int_{\Lambda} \mu_{\gamma}(A)\left((1-\lambda)+\lambda \cdot\left(\frac{\mu_{\gamma}(B)}{\mu_{\gamma}(A)}\right)^{1 / 2}\right)^{2} d \nu(\gamma)
\end{aligned}
$$

Needle decomposition

$$
\begin{aligned}
\operatorname{Area}\left([A: B]_{\lambda}^{h}\right) & =\int_{\Lambda} \mu_{\gamma}\left([A: B]_{\lambda}^{h}\right) d \nu(\gamma) \\
& ? \int_{\Lambda}\left((1-\lambda) \cdot \mu_{\gamma}(A)^{1 / 2}+\lambda \cdot \mu_{\gamma}(B)^{1 / 2}\right)^{2} d \nu(\gamma) \\
& =\int_{\Lambda} \mu_{\gamma}(A)\left((1-\lambda)+\lambda \cdot\left(\frac{\mu_{\gamma}(B)}{\mu_{\gamma}(A)}\right)^{1 / 2}\right)^{2} d \nu(\gamma) \\
& \stackrel{?}{=} \int_{\Lambda} \mu_{\gamma}(A)\left((1-\lambda)+\lambda \cdot\left(\frac{\operatorname{Area}(B)}{\operatorname{Area}(A)}\right)^{1 / 2}\right)^{2} d \nu(\gamma)
\end{aligned}
$$

Needle decomposition

$$
\begin{aligned}
\operatorname{Area}\left([A: B]_{\lambda}^{h}\right) & =\int_{\Lambda} \mu_{\gamma}\left([A: B]_{\lambda}^{h}\right) d \nu(\gamma) \\
& \stackrel{?}{\geq} \int_{\Lambda}\left((1-\lambda) \cdot \mu_{\gamma}(A)^{1 / 2}+\lambda \cdot \mu_{\gamma}(B)^{1 / 2}\right)^{2} d \nu(\gamma) \\
& =\int_{\Lambda} \mu_{\gamma}(A)\left((1-\lambda)+\lambda \cdot\left(\frac{\mu_{\gamma}(B)}{\mu_{\gamma}(A)}\right)^{1 / 2}\right)^{2} d \nu(\gamma) \\
& \stackrel{?}{=} \int_{\Lambda} \mu_{\gamma}(A)\left((1-\lambda)+\lambda \cdot\left(\frac{\operatorname{Area}(B)}{\operatorname{Area}(A)}\right)^{1 / 2}\right)^{2} d \nu(\gamma) \\
& =\left((1-\lambda) \cdot \operatorname{Area}(A)^{1 / 2}+\lambda \cdot \operatorname{Area}(B)^{1 / 2}\right)^{2}
\end{aligned}
$$

Needle decomposition

So we need:

1. A disintegration of measure:

$$
\operatorname{Area}(S)=\int_{\Lambda} \mu_{\gamma}(S) d \nu(S) \quad \text { for all } S \text { Borel }
$$

2. Mass balance:

$$
\frac{\mu_{\gamma}(A)}{\mu_{\gamma}(B)}=\frac{\operatorname{Area}(A)}{\operatorname{Area}(B)} \quad \text { for } \nu \text { - a.e. } \gamma \in \Lambda
$$

3. Needlewise Brunn-Minkowski:

$$
\mu_{\gamma}\left([A: B]_{\lambda}^{h}\right)^{1 / 2} \geq(1-\lambda) \cdot \mu_{\gamma}(A)^{1 / 2}+\lambda \cdot \mu_{\gamma}(B)^{1 / 2} \quad \gamma \in \Lambda
$$

Finsler metrization

Theorem (Caffarelli-Feldman-McCann '02, Klartag '14, Ohta '15)
Steps 1 and 2 can be acheived in the case of geodesics.

Finsler metrization

Theorem (Caffarelli-Feldman-McCann '02, Klartag '14, Ohta '15)
Steps 1 and 2 can be acheived in the case of geodesics.

Proposition (Crampin, Mestdag '13)

There exists a Finsler structure Φ on \mathbf{H} such that the collection of oriented horocycles coincide with the geodesics of Φ up to orientation - preserving reparametrization.

Finsler metrization

Theorem (Caffarelli-Feldman-McCann '02, Klartag '14, Ohta '15)

Steps 1 and 2 can be acheived in the case of geodesics.

Proposition (Crampin, Mestdag '13)

There exists a Finsler structure Φ on \mathbf{H} such that the collection of oriented horocycles coincide with the geodesics of Φ up to orientation - preserving reparametrization.

Corollary

Steps 1 and 2 can be acheived for horocycles.

Finsler metrization

Theorem (Caffarelli-Feldman-McCann '02, Klartag '14, Ohta '15)

Steps 1 and 2 can be acheived in the case of geodesics.

Proposition (Crampin, Mestdag '13)

There exists a Finsler structure Φ on \mathbf{H} such that the collection of oriented horocycles coincide with the geodesics of Φ up to orientation - preserving reparametrization.

Corollary

Steps 1 and 2 can be acheived for horocycles.
In general, not every path space can be projectively Finsler metrized. In dimension 2 this is possible locally.

Needlewise Brunn-Minkowski

Lemma

Let $F:[0, T] \times(-\varepsilon, \varepsilon) \rightarrow \mathbf{H}$ be a locally Lipschitz map such that $\operatorname{det} d F \neq 0$ a.e., and for a.e. every $s \in(-\varepsilon, \varepsilon)$, the curve $t \mapsto F(t, s)$ is a constant-speed oriented horocycle.

Needlewise Brunn-Minkowski

Lemma

Let $F:[0, T] \times(-\varepsilon, \varepsilon) \rightarrow \mathbf{H}$ be a locally Lipschitz map such that $\operatorname{det} d F \neq 0$ a.e., and for a.e. every $s \in(-\varepsilon, \varepsilon)$, the curve $t \mapsto F(t, s)$ is a constant-speed oriented horocycle. Then the map

$$
t \mapsto \operatorname{det} d F(t, s)
$$

is affine-linear for almost every $s \in(-\varepsilon, \varepsilon)$.

Needlewise Brunn-Minkowski

Lemma

Let $F:[0, T] \times(-\varepsilon, \varepsilon) \rightarrow \mathbf{H}$ be a locally Lipschitz map such that $\operatorname{det} d F \neq 0$ a.e., and for a.e. every $s \in(-\varepsilon, \varepsilon)$, the curve $t \mapsto F(t, s)$ is a constant-speed oriented horocycle. Then the map

$$
t \mapsto \operatorname{det} d F(t, s)
$$

is affine-linear for almost every $s \in(-\varepsilon, \varepsilon)$. Here det is with respect to the Euclidean area form on $[0, T] \times(-\varepsilon, \varepsilon)$ and the hyperbolic area form on \mathbf{H}.

Corollary

Each needle μ_{γ} is given by $\mu_{\gamma}=\gamma_{\#}\left(m_{\gamma}\right)$ for some measure m_{γ} with an affine density on an interval $I \subseteq \mathbb{R}$.

Needlewise Brunn-Minkowski

Theorem (Borell '75)

Let m be a Borel measure on an interval I. Suppose that m has a concave density with respect to the Lebesgue measure. Then m is 1/2-concave, i.e.

$$
m((1-\lambda) A+\lambda B)^{1 / 2} \geq(1-\lambda) \cdot m(A)^{1 / 2}+\lambda \cdot m(B)^{1 / 2}
$$

for every $A, B \subseteq I$ Borel, nonempty.

Needlewise Brunn-Minkowski

Theorem (Borell '75)

Let m be a Borel measure on an interval I. Suppose that m has a concave density with respect to the Lebesgue measure. Then m is 1/2-concave, i.e.

$$
m((1-\lambda) A+\lambda B)^{1 / 2} \geq(1-\lambda) \cdot m(A)^{1 / 2}+\lambda \cdot m(B)^{1 / 2}
$$

for every $A, B \subseteq I$ Borel, nonempty.
Corollary (up to orientation issues)
For ν-a.e. $\gamma \in \Lambda$,

$$
\mu_{\gamma}\left([A: B]_{\lambda}^{h}\right)^{1 / 2} \geq(1-\lambda) \cdot \mu_{\gamma}(A)^{1 / 2}+\lambda \mu_{\gamma}(B)^{1 / 2}
$$

Thank you!

