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Setting up the problem

Consider the variational problem

Vul|?
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with 1 < ¢ < 2 and Q C R? is an open set of finite measure.

Today we are interested in properties of minimizers and how they depend on
the set .
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Setting up the problem

Consider the variational problem
2
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with 1 < ¢ < 2 and Q C R? is an open set of finite measure.

Today we are interested in properties of minimizers and how they depend on
the set .

Throughout u, o denotes a non-negative minimizer normalized in L%(2).
Such minimizers solve the Lane—Emden equation
1 .
—Augo = A(Quiy inQ,
ugo =0 on 09Q2.

Remarks:
® If 1 < g < 2then ugq is unique. If ¢ =2 and € has multiple connected
components then there might be several (finitely many) normalized
minimizers.

® For ¢ = 1 the right-hand side of the equation should be understood as
M (Dud g = A (Q).
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The linear case: For ¢ = 2 we recognize A\2(2) as the lowest eigenvalue of the
Dirichlet Laplacian in €2 and the set of all minimizers is the corresponding
eigenspace.
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The linear case: For ¢ = 2 we recognize A\2(2) as the lowest eigenvalue of the
Dirichlet Laplacian in €2 and the set of all minimizers is the corresponding
eigenspace.

The sub-homogeneous case: For 1 < ¢ < 2 it is common to instead study the
positive solution of —Aw = @?"" and the energy F,(Q) = || Vi3 -.
By homogeneity

@= A ()P Vg and Fy(Q) = Ag(Q)™VE0.

In particular, the quantity F1(2) = 1/A1(Q) is the torsional rigidity of € and
the solution 4 is the classical torsion function; —Aw = 1 with w|aq = 0.
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The linear case: For ¢ = 2 we recognize A\2(2) as the lowest eigenvalue of the
Dirichlet Laplacian in €2 and the set of all minimizers is the corresponding
eigenspace.

The sub-homogeneous case: For 1 < ¢ < 2 it is common to instead study the
positive solution of —Aw = @?"" and the energy F,(Q) = || Vi3 -.

By homogeneity
G=X ()Y Dy, 0 and Fy(Q) = A\ ()79,

In particular, the quantity F1(2) = 1/A1(Q) is the torsional rigidity of € and
the solution 4 is the classical torsion function; —Aw = 1 with w|aq = 0.

Remarks: We won't see it much today but there are interesting differences
between the cases of ¢ =2 and 1 < ¢ < 2 (see e.g. '20)
® If ¢ = 2 then the critical values of u + || Vul||25/||u||2, is an infinite
discrete set (the spectrum of the Dirichlet Laplacian).
® For 1 < g < 2 the critical values of u + || Vu||22/|[ul|Zq is a closed
infinite set but it is not in general known to be countable. There are
examples where the set fails to be discrete (there are examples where
Aq(€) is an accumulation point).
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Basic properties (see '20)

i) (monotonicity) If ' C Q, then X\(2') > \;(9).
ii) (scaling) Let vy = (2 4+ d(2/q —1))"", then for all s > 0

A(5Q) = s\, (Q) and wuga(x) =5 YTuga(z/s).

iii) (disjoint unions) If Q = J;, Q; with ©; N1 Q;r = 0 when j # j', then
a) for1<g<2
_2-g .
A(Q) = (Z Aq(szj)—ﬁ) T and ugq= Z(%)fquqﬂj .
i>1 g1 T
b) forg=2
A2(Q) = IJHZHII A2(625)
and the set of minimizers is the linear span of
{ug,; 17 > 1 such that A2(Q5) = A2(Q)}.

iv) (continuity interior exhaustion) If Q@ C R? has finite measure and {Q;};>1
satisfy ©; C Q41 and U;>1Q; = Q and ©2; — Q locally in the Hausdorff
distance then

lim Ay (£25) = Ag(2).

Jj—oo
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Main result

Theorem

Fix1 < q <2, let @ C R? be open and bounded with Lipschitz boundary. Then

/BQ(%%Q)Zde—l(x) > 1\4(9()“”“"

where B is the unit ball and aq = (2+d(2/q —1))~".
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Main result
Theorem

Fix1 < q <2, let @ C R? be open and bounded with Lipschitz boundary. Then

Ug,0 ) 2 . (@)
/ag(%) '’ (x)z%

where B is the unit ball and aq = (2+d(2/q —1))~".

Remarks:

. .. 8 .
® That the normal derivative %‘z“ can be made sense of when 0 is

irregular follows from classical work of
in the 70’s and 80's.

® By the Pohozaev identity fm(a«g;g )295 v dHT N () :%qﬂ) equality holds
if 2 is a ball.

® |f O denotes a ball of the same measure as €, the theorem combined
with the Faber—Krahn-type inequality A\q(Q2) > A;(2") implies that
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Main result

Theorem
Fix1 < q <2, let @ C R? be open and bounded with Lipschitz boundary. Then

Oug,0\? ,,,d-1 Aq(2)
T%q,02 > 2ea\d)
/BQ( ov ) i (z) 2 aghg(B)%a’
where B is the unit ball and aq = (2+d(2/q —1))~".

History: For convex sets bounds of this form have appeared earlier, in particular
in connection to Minkowski-type problems:

® For ¢ = 2 the bound is (implicitly) in Adv. Math. '96 (for problem
of electrostatic capacity an analogue appears in Acta Math. '96).

® For ¢ =1 the bound is (implicitly) in '10.

® For g € {1,2} the bounds appear in '12.

® Similar results but where the Laplacian is replaced by the p-Laplace
operator appear in '15.
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Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn—Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn—Minkowski-type inequality.
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Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn—Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn—Minkowski-type inequality.

By the BM inequality: for @ ¢ R? and ¢ > 0 it holds that

|Q +tB|l/d Z |Q‘1/d +t|B|1/d
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Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn—Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn—Minkowski-type inequality.

By the BM inequality: for @ ¢ R? and ¢ > 0 it holds that

|Q +tB|1/d Z |Q‘l/d +t|B|1/d

2 +¢B| -0 _ (Y +¢B]Y)? ~ |0
t = t

The normal derivative of the the Lane—-Emden ground state S. Larson 6/14



Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn—Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn—Minkowski-type inequality.

By the BM inequality: for @ ¢ R? and ¢ > 0 it holds that
|Q +tB|1/d Z |Q‘l/d +t|B|1/d

2 +¢B| -0 _ (Y +¢B]Y)? ~ |0
t - t
1 t—0 J

(if 2 is regular) Per() > d|B|Y4q| =D/,
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Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn—Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn—Minkowski-type inequality.

By the BM inequality: for @ ¢ R? and ¢ > 0 it holds that
|Q +tB|1/d Z |Q‘l/d +t|B|1/d

2 +¢B| -0 _ (Y +¢B]Y)? ~ |0
t - t
1 t—0 J

(if 2 is regular) Per() > d|B|Y4q| =D/,

In general we only get a lower bound for

lim inf w = lim inf M .

t—0+ t t—0+ t
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Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn—Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn—Minkowski-type inequality.

By the BM inequality: for @ ¢ R? and ¢ > 0 it holds that
|Q +tB|1/d Z |Q‘l/d +t|B|1/d

2 +¢B| -0 _ (Y +¢B]Y)? ~ |0
t - t
1 t—0 J

(if 2 is regular) Per() > d|B|Y4q| =D/,

In general we only get a lower bound for

SM..(Q) := liminf w = lim inf M .

t—0+ t t—0+ t

When can we relate this quantity to something we are (more) familiar with?
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Strategy of proof

Here the strategy boils down to:
1) a Brunn—Minkowski inequality for A4, and

2) computing (one-sided) derivative of ¢ — \g(Q +¢B) at t = 0.
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Strategy of proof

Here the strategy boils down to:
1) a Brunn—Minkowski inequality for A4, and

2) computing (one-sided) derivative of ¢ — \g(Q +¢B) at t = 0.
Part 1) is ok.

Theorem

For0< s <1 and o, CR? open sets of finite measure

Ao((1 =) +5h) < ((1 = 8)Aq(Q0)" " + s/\q(Q1)7‘1q)_l/aq.

'76 for ¢ = 2,
This is (essentially) proved in '85 for ¢ =1, and
‘05 for1 < g <2
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Strategy of proof

Here the strategy boils down to:
1) a Brunn—Minkowski inequality for A4, and

2) computing (one-sided) derivative of ¢ — \g(Q +¢B) at t = 0.
Part 1) is ok.

Theorem
For0< s <1 and o, CR? open sets of finite measure
—a —@ —1/aq
Aa((1 = )0 +501) < (1= 8)Aq(0) 77 +sxg() ™)

'76 for ¢ = 2,
This is (essentially) proved in '85 for ¢ =1, and
‘05 for1 < g <2

Part 2) needs more work. In fact we do not know if it is true for general
Lipschitz sets!
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Strategy of proof

Here the strategy boils down to:
1) a Brunn—Minkowski inequality for A4, and

2) computing (one-sided) derivative of t — A\;(2 +tB) at ¢ = 0.
Part 1) is ok.

Theorem

For0< s <1 and Q9,1 C R? open sets of finite measure
—a —@ —1/aq
Ag((1 = 8)Q0 + 501) < ((1 — 8)Aq(€0) 7% + sAg(Q) ) .

'76 for g = 2,
This is (essentially) proved in '85 for ¢ = 1, and
'05 for 1 < g <2
Part 2) needs more work. In fact we do not know if it is true for general
Lipschitz sets!
Issues:
® The dependence of A, on regular perturbations of 2 is rather delicate.

® Generally the set {2 + ¢tB is not a regular perturbation of Q for t small.
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Strategy of proof

How do we get around these issues?

The normal derivative of the the Lane—-Emden ground state S. Larson 8/14



Strategy of proof

How do we get around these issues?
Split the argument into several parts:

® Compute derivative of t — Ay (®(t,Q)) when &: (=T, T) x R* — R% is
sufficiently regular. (Hadamard formula)
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Strategy of proof

How do we get around these issues?
Split the argument into several parts:

® Compute derivative of t — Ay (®(t,Q)) when &: (=T, T) x R* — R% is
sufficiently regular. (Hadamard formula)

® Prove that for regular 2 the mapping t — Q + tB can be approximated by
regular perturbations of ).
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Strategy of proof

How do we get around these issues?
Split the argument into several parts:

® Compute derivative of t — Ay (®(t,Q)) when &: (=T, T) x R* — R% is
sufficiently regular. (Hadamard formula)

® Prove that for regular 2 the mapping t — Q + tB can be approximated by
regular perturbations of ).

® Combining these two results with the BM inequality one proves the main
bound for regular €.

The normal derivative of the the Lane—-Emden ground state S. Larson 8/14



Strategy of proof

How do we get around these issues?
Split the argument into several parts:

® Compute derivative of t — Ay (®(t,Q)) when &: (=T, T) x R* — R% is
sufficiently regular. (Hadamard formula)

® Prove that for regular 2 the mapping t — Q + tB can be approximated by
regular perturbations of ).

® Combining these two results with the BM inequality one proves the main
bound for regular €.

® Use main inequality for regular sets and approximation argument to obtain
the result in general: € with finite measure and Lipschitz boundary.
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Strategy of proof

How do we get around these issues?
Split the argument into several parts:

e Compute derivative of t — Ay (®(t,Q)) when &: (—=T,7) x R? - R? is
sufficiently regular. (Hadamard formula)

® Prove that for regular {2 the mapping ¢t — €2 4+ tB can be approximated by
regular perturbations of €.

® Combining these two results with the BM inequality one proves the main
bound for regular €.

® Use main inequality for regular sets and approximation argument to obtain
the result in general: 2 with finite measure and Lipschitz boundary.
For the rest of the talk we take a look at the first two points and aim to prove:
Lemma

Fix1 < q<2, let Q C R? be open, bounded, connected with C* boundary.

Then
lim A(Q2+tB) — X () _ _/ (8uq,g
10+ t aq \ Ov

)2 a1 ().
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A Hadamard formula for A\,;(€2)

Theorem

Fix 1 < g <2 and Q C R? open, bounded, and connected. Let
® e CH((—1,1); Wheo(R% R?)), be such that ®(t, - ): RY — R% is a
bi-Lipschitz homeomorphism of a neighbourhood of Q) onto its image, and

D(t,z) =z + t@(w) + ot—0(t) in Wl’oo(Rd;Rd) .
Then t — Aq(®(t,Q)) is differentiable at t = 0 and

o Aa(®(5,2) = 20(2)

t—0 t

=-2 [ Vuga- (D’I‘) Vug,o dz
Q

2 .
+/ (|qu,g|2 - qq(sz)ugﬂ)v - P da .
Q q ’

If Q has Lipschitz boundary,

lim Aq(2(t, Q) = Ae(®) = 7/39 (81@9)2 v-®dH T (x).

t—0 t ov

Remark: For ¢ =1 or 2 this is classical.
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A Hadamard formula for A\,;(€2)

The result looks standard, but the standard proof runs into problems.
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A Hadamard formula for A\,;(€2)

The result looks standard, but the standard proof runs into problems.

Classically: Differentiability of ¢ — (A, (®(t,€2)), uq,a(1,0)) is established by
using the implicit function theorem applied to the mapping

Hy(Q) xR x (=1,1) - H Q) xR

(K) — (*(A(v o ®(t,) ")) o d(t,) — ,\vqﬂ)

. Jo [v]9|det Dy ®(t, )| dz — 1
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A Hadamard formula for A\,;(€2)

The result looks standard, but the standard proof runs into problems.

Classically: Differentiability of ¢ — (A, (®(t,€2)), uq,a(1,0)) is established by
using the implicit function theorem applied to the mapping

Hy(Q) xR x (=1,1) - H Q) xR

(K) — (*(A(v o ®(t,) ")) o d(t,) — ,\vqﬂ)

. Jo [v]9|det Dy ®(t, )| dz — 1

Problem: for 1 < ¢ < 2 the map v — v?~! is not Fréchet differentiable.
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A Hadamard formula for A\,;(€2)

The result looks standard, but the standard proof runs into problems.

Classically: Differentiability of ¢ — (A, (®(t,€2)), uq,a(1,0)) is established by
using the implicit function theorem applied to the mapping

Hy(Q) xR x (=1,1) - H Q) xR

(K) — (*(A(v o ®(t,) ")) o d(t,) — ,\vqﬂ)

. Jo [v]9|det Dy ®(t, )| dz — 1

Problem: for 1 < ¢ < 2 the map v — v?~! is not Fréchet differentiable.

Solution: Use a variational proof which avoids differentiating ¢ — w4 4(:,0)-
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A Hadamard formula for A\,;(€2)

Define
Jo Vu- AiVude

(fg |9 J; dw)Z/q 7

with J; = |det D, ®| and Ay = J;(D,®) " ((D,®)"1)T.

Fi: Hy(Q) — R, =

Then, with vy = ug a0y 0 P(t,-) € H5(9),

M(B(,Q) = Filv)) =  inf  Filu).
o(®(t,Q2)) = Fi(ve) ceHA (0} t(u)

Therefore

Aq(Q) < Fo(ve) and Ag(@(t,9Q)) < Fi(vo) .
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A Hadamard formula for A\,;(€2)

Define
Jo Vu- AiVude

2/q’
(fn |ul9J; d:p) !
with J; = |det D, ®| and Ay = J;(D,®) " ((D,®)"1)T.
Then, with vy = ug a0y 0 P(t,-) € H&(Q),

Fi: Hy(Q) — R, =

M(B(,Q) = Filv)) =  inf  Filu).
o(®(t,Q2)) = Fi(ve) ceHA (0} t(u)

Therefore

Aq(Q) < Fo(ve) and Ag(@(t,9Q)) < Fi(vo) .

Furthermore, uniformly in compact subsets of H{(Q) \ {0}
Fi=Fo +tF +o(t).

and hence

Aq(P(1,€2) — Ag(2)

Flu)+0(1) < :

< F(vo) +o(1).
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Approximation of Minkowski sum

Remaining problem: Want to construct regular map ® so that, for ¢t > 0 small,
D(t, Q) approximates 2 + tB,

B(t,z) = x + td(x) + oft) and ®|oa = voa.
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Approximation of Minkowski sum

Remaining problem: Want to construct regular map ® so that, for ¢t > 0 small,
D(t, Q) approximates 2 + tB,

B(t,z) = x + td(x) + oft) and ®|oa = voa.

Define the signed distance function
da(x) = dist(z, Q) — dist(z, Q°), note that |[Vig| =1 a.e.

Then, for t > 0,
Q+tB={xecR": dq(z) <t}

and a natural candidate for @ is

(t,z) — z + tVig(x).
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Approximation of Minkowski sum

Remaining problem: Want to construct regular map ® so that, for ¢t > 0 small,
D(t, Q) approximates 2 + tB,

B(t,z) = x + td(x) + oft) and ®|oa = voa.

Define the signed distance function
da(x) = dist(z, Q) — dist(z, Q°), note that |[Vig| =1 a.e.

Then, for t > 0,
Q+tB={xecR": dq(z) <t}

and a natural candidate for @ is

(t,z) — z + tVig(x).

But if 0 is non-regular then so is this map.
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Approximation of Minkowski sum

Remaining problem: Want to construct regular map ® so that, for ¢t > 0 small,
D(t, Q) approximates 2 + tB,

B(t,z) = x + td(x) + oft) and ®|oa = voa.

Define the signed distance function
da(x) = dist(z, Q) — dist(z, Q°), note that |[Vig| =1 a.e.

Then, for t > 0,
Q+tB={xecR": dq(z) <t}

and a natural candidate for @ is

(t,z) — z + tVig(x).

But if 0 is non-regular then so is this map.

Solution: Replace Vg by a new vector field obtained by localizing Vdgq close
to 92 and mollifying.
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Approximation of Minkowski sum

Theorem
Let Q C R? be open and bounded with C* boundary and fix €,6 > 0. There
exists a map ® € C*((—1,1); > (R%;R?)) so that

®(t,xz) = x + tD(x) + 0r0(t) in WH (R R?)

and
e for |t| sufficiently small ®(t,-) is a diffeomorphism of R¢ onto itself,

® for sufficiently small t > 0,
D(t, Q) CQ+tB C P((1+0)t,9Q)

® and HCI) = I/aQHLoo(@Q> <eEe.
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Approximation of Minkowski sum
Theorem

Let Q C R? be open and bounded with C* boundary and fix €,6 > 0. There
exists a map ® € C*((—1,1); > (R%;R?)) so that

®(t,xz) = x + tD(x) + 0r0(t) in WH (R R?)
and

e for |t| sufficiently small ®(t,-) is a diffeomorphism of R¢ onto itself,

® for sufficiently small t > 0,
D(t, Q) CQ+tB C P((1+0)t,9Q)

® and HCD — vaq||Leo(a0) < €.

Remark: The assumptions are essentially sharp: Setting
p() == mf{| X — vool L= (o) : X € CO(OBRY), |X| =1}
then by '07
p() =0 = 8QisC",
p() < V2 <<= 9Qis Lipschitz.
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Thank you for your attention!

The normal derivative of the the Lane-Emden ground state S. Larson 14/14



