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Setting up the problem

Consider the variational problem

λq(Ω) := inf
u∈H1

0 (Ω)\{0}

‖∇u‖2L2(Ω)

‖u‖2Lq(Ω)

,

with 1 ≤ q ≤ 2 and Ω ⊂ Rd is an open set of finite measure.

Today we are interested in properties of minimizers and how they depend on
the set Ω.

Throughout uq,Ω denotes a non-negative minimizer normalized in Lq(Ω).

Such minimizers solve the Lane–Emden equation{
−∆uq,Ω = λq(Ω)uq−1

q,Ω in Ω ,

uq,Ω = 0 on ∂Ω .

Remarks:
• If 1 ≤ q < 2 then uq,Ω is unique. If q = 2 and Ω has multiple connected

components then there might be several (finitely many) normalized
minimizers.
• For q = 1 the right-hand side of the equation should be understood as
λ1(Ω)u0

1,Ω ≡ λ1(Ω).
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The linear case: For q = 2 we recognize λ2(Ω) as the lowest eigenvalue of the
Dirichlet Laplacian in Ω and the set of all minimizers is the corresponding
eigenspace.

The sub-homogeneous case: For 1 ≤ q < 2 it is common to instead study the
positive solution of −∆ũ = ũq−1 and the energy Fq(Ω) = ‖∇ũ‖2L2 .

By homogeneity

ũ = λq(Ω)−1/(2−q)uq,Ω and Fq(Ω) = λq(Ω)−q/(2−q).

In particular, the quantity F1(Ω) = 1/λ1(Ω) is the torsional rigidity of Ω and
the solution ũ is the classical torsion function; −∆w = 1 with w|∂Ω = 0.

Remarks: We won’t see it much today but there are interesting differences
between the cases of q = 2 and 1 < q < 2 (see e.g. Brasco–Franzina ’20)

• If q = 2 then the critical values of u 7→ ‖∇u‖2L2/‖u‖2L2 is an infinite
discrete set (the spectrum of the Dirichlet Laplacian).

• For 1 < q < 2 the critical values of u 7→ ‖∇u‖2L2/‖u‖2Lq is a closed
infinite set but it is not in general known to be countable. There are
examples where the set fails to be discrete (there are examples where
λq(Ω) is an accumulation point).
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the solution ũ is the classical torsion function; −∆w = 1 with w|∂Ω = 0.

Remarks: We won’t see it much today but there are interesting differences
between the cases of q = 2 and 1 < q < 2 (see e.g. Brasco–Franzina ’20)

• If q = 2 then the critical values of u 7→ ‖∇u‖2L2/‖u‖2L2 is an infinite
discrete set (the spectrum of the Dirichlet Laplacian).

• For 1 < q < 2 the critical values of u 7→ ‖∇u‖2L2/‖u‖2Lq is a closed
infinite set but it is not in general known to be countable. There are
examples where the set fails to be discrete (there are examples where
λq(Ω) is an accumulation point).

The normal derivative of the the Lane–Emden ground state S. Larson 3/14



The linear case: For q = 2 we recognize λ2(Ω) as the lowest eigenvalue of the
Dirichlet Laplacian in Ω and the set of all minimizers is the corresponding
eigenspace.

The sub-homogeneous case: For 1 ≤ q < 2 it is common to instead study the
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ũ = λq(Ω)−1/(2−q)uq,Ω and Fq(Ω) = λq(Ω)−q/(2−q).

In particular, the quantity F1(Ω) = 1/λ1(Ω) is the torsional rigidity of Ω and
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Basic properties (see Brasco–Franzina ’20)

i) (monotonicity) If Ω′ ⊂ Ω, then λq(Ω
′) ≥ λq(Ω).

ii) (scaling) Let αq = (2 + d(2/q − 1))−1, then for all s > 0

λq(sΩ) = s−1/αqλq(Ω) and uq,sΩ(x) = s−d/quq,Ω(x/s) .

iii) (disjoint unions) If Ω =
⋃
j≥1 Ωj with Ωj ∩ Ωj′ = ∅ when j 6= j′, then

a) for 1 ≤ q < 2

λq(Ω) =

(∑
j≥1

λq(Ωj)
− q

2−q

)− 2−q
q

and uq,Ω =
∑
j≥1

( λq(Ω)

λq(Ωj)

) 1
2−q

uq,Ωj
.

b) for q = 2
λ2(Ω) = min

j≥1
λ2(Ωj)

and the set of minimizers is the linear span of{
uq,Ωj

: j ≥ 1 such that λ2(Ωj) = λ2(Ω)
}
.

iv) (continuity interior exhaustion) If Ω ⊂ Rd has finite measure and {Ωj}j≥1

satisfy Ωj ⊂ Ωj+1 and ∪j≥1Ωj = Ω and Ωj → Ω locally in the Hausdorff
distance then

lim
j→∞

λq(Ωj) = λq(Ω) .
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Main result

Theorem

Fix 1 ≤ q ≤ 2, let Ω ⊂ Rd be open and bounded with Lipschitz boundary. Then∫
∂Ω

(∂uq,Ω
∂ν

)2

dHd−1(x) ≥ λq(Ω)1+αq

αqλq(B)αq
,

where B is the unit ball and αq = (2 + d(2/q − 1))−1.
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∂Ω

(∂uq,Ω
∂ν

)2

dHd−1(x) ≥ λq(Ω)1+αq

αqλq(B)αq
,

where B is the unit ball and αq = (2 + d(2/q − 1))−1.

Remarks:

• That the normal derivative
∂uq,Ω

∂ν
can be made sense of when ∂Ω is

irregular follows from classical work of Dahlberg, Jerison–Kenig,
Verchota in the 70’s and 80’s.

• By the Pohozaev identity
∫
∂Ω

( ∂uq,Ω

∂ν

)2
x · ν dHd−1(x) =

λq(Ω)

αq
equality holds

if Ω is a ball.

• If Ω∗ denotes a ball of the same measure as Ω, the theorem combined
with the Faber–Krahn-type inequality λq(Ω) ≥ λq(Ω∗) implies that∫

∂Ω

(∂uq,Ω
∂ν

)2

dHd−1(x) ≥
∫
∂Ω∗

(∂uq,Ω∗
∂ν

)2

dHd−1(x) .

The normal derivative of the the Lane–Emden ground state S. Larson 5/14



Main result

Theorem

Fix 1 ≤ q ≤ 2, let Ω ⊂ Rd be open and bounded with Lipschitz boundary. Then∫
∂Ω

(∂uq,Ω
∂ν

)2

dHd−1(x) ≥ λq(Ω)1+αq

αqλq(B)αq
,

where B is the unit ball and αq = (2 + d(2/q − 1))−1.

History: For convex sets bounds of this form have appeared earlier, in particular
in connection to Minkowski-type problems:

• For q = 2 the bound is (implicitly) in Jerison Adv. Math. ’96 (for problem
of electrostatic capacity an analogue appears in Jerison Acta Math. ’96).

• For q = 1 the bound is (implicitly) in Colesanti–Fimiani ’10.

• For q ∈ {1, 2} the bounds appear in Bucur–Fragala–Lamboley ’12.

• Similar results but where the Laplacian is replaced by the p-Laplace
operator appear in Colesanti–Nyström–Salani–Xiao–Yang–Zhang ’15.
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Strategy of proof

Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn–Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn–Minkowski-type inequality.
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|Ω + tB| − |Ω|
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Idea: Our aim is to mimic a classical argument to pass from the classical
Brunn–Minkowski inequality to the classical isoperimetric inequality.

Essentially we want to differentiate a Brunn–Minkowski-type inequality.

By the BM inequality: for Ω ⊂ Rd and t > 0 it holds that
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⇐⇒ |Ω + tB| − |Ω|
t

≥ (|Ω|1/d + t|B|1/d)d − |Ω|
t

↓ t→ 0 ↓

(if Ω is regular) Per(Ω) ≥ d|B|1/d|Ω|(d−1)/d.

In general we only get a lower bound for

SM∗(Ω) := lim inf
t→0+

|Ω + tB| − |Ω|
t

= lim inf
t→0+

|(Ω + tB) \ Ω|
t

.

When can we relate this quantity to something we are (more) familiar with?
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Strategy of proof

Here the strategy boils down to:
1) a Brunn–Minkowski inequality for λq, and

2) computing (one-sided) derivative of t 7→ λq(Ω + tB) at t = 0.
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Strategy of proof

Here the strategy boils down to:
1) a Brunn–Minkowski inequality for λq, and

2) computing (one-sided) derivative of t 7→ λq(Ω + tB) at t = 0.

Part 1) is ok.

Theorem

For 0 ≤ s ≤ 1 and Ω0,Ω1 ⊂ Rd open sets of finite measure

λq((1− s)Ω0 + sΩ1) ≤
(

(1− s)λq(Ω0)−αq + sλq(Ω1)−αq

)−1/αq

.

This is (essentially) proved in


Brascamp–Lieb ’76 for q = 2,

Borell ’85 for q = 1, and

Colesanti ’05 for 1 ≤ q < 2.
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Part 2) needs more work. In fact we do not know if it is true for general
Lipschitz sets!
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Strategy of proof

Here the strategy boils down to:
1) a Brunn–Minkowski inequality for λq, and

2) computing (one-sided) derivative of t 7→ λq(Ω + tB) at t = 0.

Part 1) is ok.

Theorem

For 0 ≤ s ≤ 1 and Ω0,Ω1 ⊂ Rd open sets of finite measure

λq((1− s)Ω0 + sΩ1) ≤
(

(1− s)λq(Ω0)−αq + sλq(Ω1)−αq

)−1/αq

.

This is (essentially) proved in


Brascamp–Lieb ’76 for q = 2,

Borell ’85 for q = 1, and

Colesanti ’05 for 1 ≤ q < 2.

Part 2) needs more work. In fact we do not know if it is true for general
Lipschitz sets!

Issues:

• The dependence of λq on regular perturbations of Ω is rather delicate.

• Generally the set Ω + tB is not a regular perturbation of Ω for t small.
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Strategy of proof

How do we get around these issues?

Split the argument into several parts:

• Compute derivative of t 7→ λq(Φ(t,Ω)) when Φ: (−T, T )× Rd → Rd is
sufficiently regular. (Hadamard formula)

• Prove that for regular Ω the mapping t 7→ Ω + tB can be approximated by
regular perturbations of Ω.

• Combining these two results with the BM inequality one proves the main
bound for regular Ω.

• Use main inequality for regular sets and approximation argument to obtain
the result in general: Ω with finite measure and Lipschitz boundary.
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Strategy of proof

How do we get around these issues?

Split the argument into several parts:

• Compute derivative of t 7→ λq(Φ(t,Ω)) when Φ: (−T, T )× Rd → Rd is
sufficiently regular. (Hadamard formula)

• Prove that for regular Ω the mapping t 7→ Ω + tB can be approximated by
regular perturbations of Ω.

• Combining these two results with the BM inequality one proves the main
bound for regular Ω.

• Use main inequality for regular sets and approximation argument to obtain
the result in general: Ω with finite measure and Lipschitz boundary.

For the rest of the talk we take a look at the first two points and aim to prove:

Lemma

Fix 1 ≤ q ≤ 2, let Ω ⊂ Rd be open, bounded, connected with C1 boundary.
Then

lim
t→0+

λq(Ω + tB)− λq(Ω)

t
= −

∫
∂Ω

(∂uq,Ω
∂ν

)2

dHd−1(x) .
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A Hadamard formula for λq(Ω)

Theorem

Fix 1 ≤ q ≤ 2 and Ω ⊂ Rd open, bounded, and connected. Let
Φ ∈ C1((−1, 1);W 1,∞(Rd;Rd)), be such that Φ(t, · ) : Rd → Rd is a
bi-Lipschitz homeomorphism of a neighbourhood of Ω onto its image, and

Φ(t, x) = x+ tΦ̇(x) + ot→0(t) in W 1,∞(Rd;Rd) .

Then t 7→ λq(Φ(t,Ω)) is differentiable at t = 0 and

lim
t→0

λq(Φ(t,Ω))− λq(Ω)

t
= −2

∫
Ω

∇uq,Ω ·
(
DΦ̇
)
∇uq,Ω dx

+

∫
Ω

(
|∇uq,Ω|2 −

2

q
λq(Ω)uqq,Ω

)
∇ · Φ̇ dx .

If Ω has Lipschitz boundary,

lim
t→0

λq(Φ(t,Ω))− λq(Ω)

t
= −

∫
∂Ω

(
∂uq,Ω
∂ν

)2

ν · Φ̇ dHd−1(x) .

Remark: For q = 1 or 2 this is classical.
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A Hadamard formula for λq(Ω)

The result looks standard, but the standard proof runs into problems.
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A Hadamard formula for λq(Ω)

The result looks standard, but the standard proof runs into problems.

Classically: Differentiability of t 7→ (λq(Φ(t,Ω)), uq,Φ(t,Ω)) is established by
using the implicit function theorem applied to the mapping

H1
0 (Ω)× R× (−1, 1)→ H−1(Ω)× R(v

λ
t

)
7→
(
−(∆(v ◦ Φ(t, ·)−1)) ◦ Φ(t, ·)− λvq−1∫

Ω
|v|q|detDxΦ(t, x)| dx− 1

)
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Problem: for 1 < q < 2 the map v 7→ vq−1 is not Fréchet differentiable.
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A Hadamard formula for λq(Ω)

The result looks standard, but the standard proof runs into problems.

Classically: Differentiability of t 7→ (λq(Φ(t,Ω)), uq,Φ(t,Ω)) is established by
using the implicit function theorem applied to the mapping

H1
0 (Ω)× R× (−1, 1)→ H−1(Ω)× R(v

λ
t

)
7→
(
−(∆(v ◦ Φ(t, ·)−1)) ◦ Φ(t, ·)− λvq−1∫

Ω
|v|q|detDxΦ(t, x)| dx− 1

)

Problem: for 1 < q < 2 the map v 7→ vq−1 is not Fréchet differentiable.

Solution: Use a variational proof which avoids differentiating t 7→ uq,Φ(t,Ω).
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A Hadamard formula for λq(Ω)

Define

Ft : H1
0 (Ω)→ R, u 7→

∫
Ω
∇u ·At∇u dx(∫

Ω
|u|qJt dx

)2/q
,

with Jt = |detDxΦ| and At = Jt(DxΦ)−1((DxΦ)−1)>.

Then, with vt = uq,Φ(t,Ω) ◦ Φ(t, ·) ∈ H1
0 (Ω),

λq(Φ(t,Ω)) = Ft(vt) = inf
u∈H1

0 (Ω)\{0}
Ft(u).

Therefore

λq(Ω) ≤ F0(vt) and λq(Φ(t,Ω)) ≤ Ft(v0) .

Furthermore, uniformly in compact subsets of H1
0 (Ω) \ {0}

Ft = F0 + tḞ + o(t).

and hence

Ḟ(vt) + o(1) ≤ λq(Φ(t,Ω))− λq(Ω)

t
≤ Ḟ(v0) + o(1) .
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)2/q
,

with Jt = |detDxΦ| and At = Jt(DxΦ)−1((DxΦ)−1)>.

Then, with vt = uq,Φ(t,Ω) ◦ Φ(t, ·) ∈ H1
0 (Ω),

λq(Φ(t,Ω)) = Ft(vt) = inf
u∈H1

0 (Ω)\{0}
Ft(u).

Therefore

λq(Ω) ≤ F0(vt) and λq(Φ(t,Ω)) ≤ Ft(v0) .

Furthermore, uniformly in compact subsets of H1
0 (Ω) \ {0}

Ft = F0 + tḞ + o(t).

and hence

Ḟ(vt) + o(1) ≤ λq(Φ(t,Ω))− λq(Ω)

t
≤ Ḟ(v0) + o(1) .
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Approximation of Minkowski sum

Remaining problem: Want to construct regular map Φ so that, for t > 0 small,
Φ(t,Ω) approximates Ω + tB,

Φ(t, x) = x+ tΦ̇(x) + o(t) and Φ̇|∂Ω = ν∂Ω.

Define the signed distance function

δΩ(x) = dist(x,Ω)− dist(x,Ωc), note that |∇δΩ| = 1 a.e.

Then, for t > 0,
Ω + tB = {x ∈ Rd : δΩ(x) < t}

and a natural candidate for Φ is

(t, x) 7→ x+ t∇δΩ(x).

But if ∂Ω is non-regular then so is this map.

Solution: Replace ∇δΩ by a new vector field obtained by localizing ∇δΩ close
to ∂Ω and mollifying.
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Approximation of Minkowski sum

Theorem

Let Ω ⊂ Rd be open and bounded with C1 boundary and fix ε, δ > 0. There
exists a map Φ ∈ C1((−1, 1);C∞(Rd;Rd)) so that

Φ(t, x) = x+ tΦ̇(x) + ot→0(t) in W 1,∞(Rd;Rd)

and

• for |t| sufficiently small Φ(t, ·) is a diffeomorphism of Rd onto itself,

• for sufficiently small t > 0,

Φ(t,Ω) ⊆ Ω + tB ⊂ Φ((1 + δ)t,Ω)

• and ‖Φ̇− ν∂Ω‖L∞(∂Ω) < ε.

Remark: The assumptions are essentially sharp: Setting

ρ(Ω) := inf{‖X − ν∂Ω‖L∞(∂Ω) : X ∈ C0(∂Ω;Rd), |X| = 1}

then by Hofmann–Mitrea–Taylor ’07

ρ(Ω) = 0 ⇐⇒ ∂Ω is C1,

ρ(Ω) <
√

2 ⇐⇒ ∂Ω is Lipschitz.
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Thank you for your attention!
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