Conditional Concentration for functions of HD nam arrows (joint work with P. Dodos aud K. Tyros)

Introduction

- Concentration: (Talagrand) A flection of many variables which depluds smoothly $m$ them is sentialy constant.

Examples . (Gaussian) $G \sim N\left(0, I_{n}\right)$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f$ is 1 -Lipsehitz then $P(|f(G)-\mathbb{E} f(G)|>t) \leqslant 2 e^{-t^{2} / 2}, \quad t>0$

- Martingale methods: Azuma's inequality

If $d_{1}, \ldots, d_{n}$ is a multiplicative fytiem on $(\Omega, r, p)$, that is

$$
\forall I \subset[n] \quad \mathbb{E}\left[\prod_{i \in I} d_{i}\right]=0
$$

(eg. a martingale dif. seq.)
then $\left\|\sum_{j=1}^{n} d_{j}\right\|_{L p} \leqslant \sqrt{p}\left(\sum_{j=1}^{n}\left\|d_{j}\right\|_{L \infty}^{2}\right)^{1 / 2}, \quad 2 \leq p<\infty$.

- Doob's martingale decomposition + Azuma ineq $\Rightarrow$

McDiarmid's bod diff. ineq: $f\left(X_{1}, \ldots, X_{n}\right), \quad X_{i}$ index. $f$ is Lip curt the weighted Hamming metric

$$
\begin{aligned}
& \downarrow d(x, y)=\sum_{i=1}^{n} c_{i} 1_{\left\{x_{i} \neq y_{i}\right\}}^{n} \\
& f(x)-\mathbb{E} f(x) \sum_{j=1}^{n} d_{j} \\
& d_{k}=\mathbb{E}\left[f(x) \mid x_{1, \ldots}\left[x_{k}\right]-\mathbb{E}\left[f(x) \mid x_{1, \ldots}\left[x_{k-1}\right]\right.\right. \\
& k=1,2, \ldots, n
\end{aligned}
$$

Q: How about concentration when f lacks smoothness properties?
$\left.\begin{array}{l}\text { Tow }(p=2) \\ \operatorname{DKT~}(1<p \leq 2)\end{array}\right\} \quad$ Conditional concentration
$P=$ 2: Given $k \in \mathbb{N}, \varepsilon>0 \quad \exists N=N(\xi, k) \in \mathbb{N}$ of: For any rom vector $X=\left(X_{1},, X_{n}\right)$ where $X_{n}$ are indep and $X$-valued, and for any $f: X^{n} \rightarrow \mathbb{R}$ with $\|f(X)\|_{L^{2}}=1$, there exists a segment $I C[n]$ with $|I|=k$ so that $\mathbb{E}[f(X) \mid \underbrace{}_{i} ; i \in I]_{F_{I}}$ is well-concentrated around its mean, ie.

$$
\mathbb{P}\left(\left|\mathbb{E}\left[f(x) \mid F_{I}\right]-\mathbb{E} f(x)\right|>\varepsilon\right) \leqslant \varepsilon .
$$

I. Remanent

$$
I=\{i+1, i+2, \ldots \quad i+k\} \subset[n] .
$$

Sketch of proof $f(x)-\mathbb{E} f(x)=\sum_{k=1}^{n} d_{k}, \quad d_{k}=$ as be bore $d_{k}$ ane mutually orthogonal

$$
\begin{array}{r}
1 \geqslant \operatorname{Var}(f(x))=\mathbb{E}\left[\Sigma d_{i}\right]^{2}=\sum_{i=1}^{n} \mathbb{E}\left(d_{i}^{2}\right) \Longrightarrow \exists k H \mathbb{E} d_{k}^{2} \leqslant \frac{1}{n} \\
\frac{1}{n} \geqslant \mathbb{E}\left(\mathbb{E}\left[f \mid x_{1} \ldots x_{k}\right]-\mathbb{E}\left[f \mid x_{1} \ldots x_{k-1}\right]\right)^{2} \\
=\mathbb{E}\left[\mathbb{E}\left[d_{k}^{2} \mid x_{k}\right]\right] \underset{\text { Jensen }}{\geqslant} \mathbb{E}\left[\left(\mathbb{E}\left[d_{k} \mid x_{k}\right]\right)^{2}\right] \\
\left.\uparrow x_{i}\right]^{\prime} \text { indeap. } \\
\left.\mathbb{E}\left(\mathbb{E}\left[f \mid x_{k}\right]-\mathbb{E} \mid f\right\rceil\right)^{2}
\end{array}
$$

If instead $I_{1}, \ldots, I_{m}, m \sim \frac{n}{k}, \quad\left|I_{j}\right|=k$ intervals of $[m]$ and $\Delta_{k}=\mathbb{E}\left[f \mid X_{i}: i \in \bigcup_{s=1}^{k} I_{s}\right]-\mathbb{E}\left[f \mid X_{i}: i \in \bigcup_{s=1}^{k-1} I_{s}\right]$.
by arguing similarly, we find that $\exists k \in\{1,2, \ldots, m\}$ st.

$$
\begin{aligned}
& \operatorname{Var}\left(\mathbb{E}\left[f \mid x_{i}: i \in I_{k}\right]\right) \leqslant \frac{1}{m} \sim \frac{k}{n} \\
& \mathbb{P}\left(\left\lvert\, \mathbb{E}\left[f\left|x_{i}:\left(\in f_{k}\right]-\mathbb{E} f(x)\right|>\varepsilon\right) \preccurlyeq \frac{1}{\varepsilon^{2}} \frac{k}{n} \leqslant \varepsilon\right.,\right.
\end{aligned}
$$

provided that $k \approx \varepsilon^{3} n$.

DKT (2016): Similar for $\|f(x)\|_{L P}=1, \quad 1<p \leqslant 2$.
Extension of the "orthog. of m.d.s" in $L^{P}$ :

- Burkholder's in eq: estimates for square-fuction,
- Ricand, $X_{u}(2016): \frac{1}{\sqrt{p-1}}\left\|\sum_{i=1}^{m} d_{i}\right\|_{L^{p}} \geqslant\left(\sum_{i=1}^{m}\left\|d_{i}\right\|_{L^{p}}^{2}\right)^{1 / 2}$ (di) m.d.s.

Main Goal: To extend this phenomenon to HD rom arrays, that lack independence, but enjoy of minetries.

Def. (rdm arrays; subarrays)

- $d$-dim rom arvay on $[n]$ it's a dochartic process $X=\left\langle X_{t}: t \in\binom{[m]}{d}\right\rangle$
- sub-array : fix $I \subset[x],|I| \geqslant d: X_{ \pm}=\left\langle X_{t}: t \in\left(I_{d}\right)\right\rangle$
- C-algebras generated by $X_{I}$ will be denoted by $F_{I}=\rho\left(X_{I}\right)$

Examples 1) $d=1 \sim$ rolm vectors.
$d=2 \rightarrow$ rdm rym. matrices
$d \gg 1 \leadsto$ dom oym. tenrors.
2) $\xi_{1}, \ldots, \xi_{n}$ (mdep) ndm variables $V t \subset[n],|t|=d \Rightarrow X_{t}=\prod_{j \in t} \xi_{j}$. or move generally $X_{t}=f\left(\xi_{i_{1}}, \xi_{i_{2}}, \ldots, \xi_{i_{d}}\right)$,
when $t=\left\{i_{1}<i_{2}<.<i d\right\} c[n]$

- spreadability: $X$ d-dime idue aray it's sproadarble if

$$
\forall A, B C[n\}, \quad|A|=|B| \geqslant d \quad X_{A} \stackrel{d}{=} X_{B}
$$

$\eta$-spreadable: $\quad=\quad d_{T V}\left(\mathcal{L}\left(X_{A}\right), \mathcal{L}\left(X_{B}\right)\right) \leqslant \eta$.

FACT If a non array is finite-valud then for $n$ lange enough there is a bab-array which is $\eta$-spreadable. (thence, app no. spreadability is ubiquitous)
dissociativity: $X$ dissociated if $\nmid A, B \subset[n], A \cap B=\phi \Rightarrow X_{A}, X_{B}$
Eg. $X_{t}=\prod_{i \in 1} \xi_{i},\left(\xi_{i}\right)$ indep. (as above) are indef.
Mam result (for $d=2$; Boolean case)
$1<p \leqslant 2, \varepsilon>0, k \geqslant 2$ aud $C:=\left((\varepsilon, p, k)=\exp \left(\frac{c_{0}}{\varepsilon^{8}(p-1)} k^{2}\right)\right.$ $n \geqslant C$ and $X=\left\langle X_{t}: t \in\binom{[x \mid}{2}\right\rangle$ be $\{0,1\}$-valued, $\frac{1}{C}$-spreadable, aud assume the
"Box independence condition, i.e.,

$$
\left|\mathbb{E}\left[x_{13} x_{14} x_{23} x_{24}\right]-\mathbb{E}\left[X_{13}\right] \mathbb{E}\left[X_{14}\right] \mathbb{E}\left[x_{23}\right] \mathbb{E}\left[x_{24}\right]\right| \leqslant \frac{1}{C} .
$$



Then, $\forall f:\{0,1\}^{\binom{[1]}{2}} \rightarrow \mathbb{R}$ \&. $\|f(x)\|_{L^{p}}=1$; A $I \subset[x], \quad|I|=k(\underbrace{}_{i, p} \sqrt{\log n})$ st. $\mathbb{P}\left(\left|\mathbb{E}\left[f(x) \mid f_{I}\right]-\mathbb{E} f(x)\right|>\varepsilon\right)<\varepsilon$.

