Comprehensive Examination, Fall 2001
 REAL ANALYSIS

Instructions: Answer five out of the following eight questions. Please provide careful and complete answers; partial progress toward many questions counts less than a complete answer to fewer questions. If you attempt more than five questions, specify which ones you want to be graded, otherwise the first five answered will be graded.

1. Let (X, \mathcal{A}, m) be a measure space with $m(X)<\infty$ and let $f: X \rightarrow X$ be measurable and satisfy

$$
m\left(f^{-1}(E)\right)=m(E) \text { for any measurable set } E \text {. }
$$

Fix a measurable set $A \subset X$.
(i) Let $B=\left\{x \in A \mid f^{n}(x) \notin A\right.$ for all $\left.n>0\right\}$. Show that $\left\{f^{-n}(B)\right\}_{n=0}^{\infty}$ are pairwise disjoint.
(ii) Show that $m(B)=0$.
(iii) Show that for almost all $x \in A$, there are infinitely many $n>0$ such that $f^{n}(x) \in A$.
2. Assume that $f, f_{1}, f_{2}, \ldots \in L^{1}(\mathbb{R})$ and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for a.e. x.
(i) Show that $\left\|\left|f_{n}\right|-\left|f_{n}-f\right|-|f|\right\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Show that if $\left\|f_{n}\right\|_{L^{1}} \rightarrow\|f\|_{L^{1}}$, then $\left\|f_{n}-f\right\|_{L^{1}} \rightarrow 0$.
(iii) Give an example of $\left\{f_{n}\right\} \subset L^{1}(\mathbb{R})$ such that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 \text { for all } x \in \mathbb{R}, \text { but } \lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{1}} \neq 0
$$

3. Let f be a real-valued measurable function on a measure space (X, \mathcal{A}, m). Define

$$
g(\lambda)=m(\{x \in X| | f(x) \mid>\lambda\}) \quad \lambda \geq 0 .
$$

(i) Show that $\int_{X}|f(x)| m(d x)=\int_{0}^{\infty} g(\lambda) d \lambda$.
(ii) Show that if f is integrable on X, then $\lim _{n \rightarrow \infty} n g(n)=\lim _{n \rightarrow \infty} \frac{1}{n} g\left(\frac{1}{n}\right)=0$.
4. Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a homeomorphism satisfying

$$
d(f(x), f(y)) \leq d(x, y) \quad \text { for all } x, y \in X
$$

Show that:
(i) For any $a, b \in X, \lim _{n \rightarrow \infty} d\left(f^{n}(a), f^{n}(b)\right)$ exists.
(ii) If $k_{n} \rightarrow \infty$ and $\left(f^{k_{n}}(a), f^{k_{n}}(b)\right) \rightarrow(x, y)$, then $d(f(x), f(y))=d(x, y)$.
(iii) For any $(x, y) \in X \times X$, there exists a sequence $k_{n} \rightarrow \infty$ such that

$$
\left(f^{-k_{n}}(x), f^{-k_{n}}(y)\right) \text { converges to some }(a, b) \in X \times X \text {. }
$$

(iv) Show that f indeed is an isometry; that is,

$$
d(f(x), f(y))=d(x, y) \quad \text { for all } x, y \in X
$$

5. (a) Let H be a Hilbert space and $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of continuous linear functionals on H such that for every $x \in H$

$$
\sup _{n}\left|f_{n}(x)\right|<+\infty
$$

Show that

$$
\sup _{n}\left\|f_{n}\right\|<+\infty
$$

Hint: Use the Baire Category Theorem.
(b) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers such that for every sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ with $\sum_{n=1}^{\infty} b_{n}^{2}<\infty$, we have that $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. Prove that $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$.
6. Prove that a metric space X is complete if and only if for every nested sequence of non-empty closed sets $A_{n}, A_{1} \supset A_{2} \supset \ldots \supset A_{n} \supset \ldots$, such that $\operatorname{diam}\left(A_{n}\right) \rightarrow 0$ we have

$$
\bigcap_{n=1}^{\infty} A_{n} \neq \emptyset
$$

7. Let $g:[0,1] \rightarrow \mathbb{R}$ be continuous. Define

$$
f(x)=\int_{0}^{x} g(t) d t
$$

Prove that f has bounded variation on $[0,1]$ and its total variation is equal to

$$
\int_{0}^{1}|g(x)| d x
$$

8. Let $\left\{f_{n}\right\}$ be a sequence of functions, each continuously differentiable on $(0,1)$, such that $\int_{0}^{1}\left[f_{n}^{\prime}(x)\right]^{2} d x \leq 1$ and $\int_{0}^{1}\left[f_{n}(x)\right]^{2} d x \leq 1$ for every n. Prove that there exists a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ that converges uniformly on $(0,1)$.
Hint: The Cauchy-Schwarz Inequality is helpful here.

Comprehensive Examination, Fall 2001
 ALGEBRA

Instructions: Answer five out of the following eight questions. Please provide careful and complete answers; partial progress toward many questions counts less than a complete answer to fewer questions. If you attempt more than five questions, specify which ones you want to be graded, otherwise the first five answered will be graded.

1. Let G be a finite group.
(a) Suppose that G has order n and p is the smallest prime divisor of n. Show that any subgroup of G of index p is normal.
(b) Suppose that G has order 255. Prove that G has a normal subgroup of order 17 as well as a cyclic normal subgroup of order 85. From these facts deduce that any group of order 255 is cyclic.
2. Let $\gamma=\left(i_{1}, \ldots, i_{r}\right)$ be a cycle in S_{n} (the symmetric group on $\{1, \ldots, n\}$) and let σ be another element of S_{n}.
(a) Show that $\sigma \gamma \sigma^{-1}$ is the cycle $\left(\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{r}\right)\right)$.
(b) Let A_{n} be the subgroup of S_{n} consisting of the even permutations. Prove that A_{n} is generated by the 3 -cycles and if $n \geq 5$ all 3 -cycles are conjugates in A_{n}.
3. Let R be a commutative ring with unit element.
(a) Prove that every maximal ideal of R is a prime ideal.
(b) Give an example of a ring that is not a field in which every prime ideal is a maximal ideal.
(c) Give an example of a ring in which some prime ideal is not a maximal ideal.
4. Let A be a commutative ring and I an ideal distinct from A. Let $J(I)=\{x \in A \mid$ $x^{n} \in I$ for some $\left.n>0\right\}$.
(a) Prove that $J(I)$ is an ideal and that $J(J(I))=J(I)$.
(b) Prove that $J(I)$ is equal to the intersection of the prime ideals of A containing I.
5. Let k be a field of characteristic $\neq 2,3$. Prove that the following statements are equivalent:
(a) Any sum of squares in k is itself a square.
(b) Whenever a cubic polynomial f factors completely in k, so does its derivative f^{\prime}.
6. (a) Let K be a field and F a subfield of K. Let $a, b \in K$ be algebraic over F of degree m, n, respectively. Prove that $a+b$ is algebraic over F of degree at most $m n$.
(b) If m, n are relatively prime, show that $F(a, b)$ is an algebraic extension of degree exactly $m n$ over F.
(c) Let $K=\mathbb{R}$ be the field of real numbers and $F=\mathbb{Q}$ the subfield of rational numbers. What is the degree of $\sqrt{2}+\sqrt{3}$ over F ? You have to prove your answers in order to get credit.
7. Let V be a finite dimensional real vector space, and $T: V \rightarrow V$ be a linear transformation. Prove that $\operatorname{Rank}(T)=\operatorname{Rank}\left(T^{2}\right)$ if and only if

$$
\operatorname{Range}(T) \cap \operatorname{Nullspace}(T)=\{0\}
$$

8. Prove that for every $n \times n$ complex matrix A there exists a unitary matrix U such that $M=U^{*} A U$ is upper triangular. (U is unitary if $A^{*}=A^{-1}$, where $A^{*}=\bar{A}^{T}$.)
