Real Analysis Exam

[1] For $\varepsilon > 0$ and k > 0, denote by $A(k, \varepsilon)$ the set of $x \in \mathbb{R}$ such that

$$\left|x - \frac{p}{q}\right| \ge \frac{1}{k |q|^{2+\varepsilon}}$$
 for any integers p, q with $q \neq 0$.

Show that $\mathbb{R} \setminus \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of Lebesgue measure zero.

[2] Fix an enumeration of all rational numbers: r_1, r_2, r_3, \cdots . For $x \in \mathbb{R}$, define

$$f(x) =$$
the cardinal number of the set $\{n : |x - r_n| \le \frac{1}{2^n}\}.$

- (a) Show that f is Lebesgue measurable.
- (b) Evaluate $\int_{\mathbb{R}} f(x) dx$.

- [3] Let X be a set and \mathcal{M} a σ -algebra of subsets of X (i.e., \emptyset , $X \in \mathcal{M}$ and \mathcal{M} is closed under taking complements and countable unions of sets in \mathcal{M}).
 - (a) If μ is an extended real valued function on \mathcal{M} , what conditions must μ satisfy in order to be called a *measure*?
 - (b) Take $X = \mathbb{R}^n$ and let \mathcal{M} be the set of all subsets of \mathbb{R}^n . Is \mathcal{M} a σ -algebra?
 - (c) With X and \mathcal{M} as in (b) above, let $d \in [0, n]$ and define d-dimensional Hausdorff measure $\mathcal{H}^d : \mathcal{M} \to \mathbb{R}$ by

$$\mathcal{H}^{d}(A) = \lim_{r \searrow 0} \left(\inf \left\{ \sum_{j=1}^{\infty} \left[\operatorname{diam}(A_{j}) \right]^{d} : A \subset \bigcup_{j=1}^{\infty} A_{j}, \operatorname{diam}(A_{j}) \leq r \right\} \right).$$
(1)

Here diam $(A_j) = \sup\{||x - y|| : x, y \in A_j\}$ is the diameter of A_j . Show that the limit in (1), and hence \mathcal{H}^d , is well defined.

(d) Is \mathcal{H}^1 a measure? Justify your answer.

[4] Let $f : \mathbb{R} \to \mathbb{R}$ be in $L^1(\mathbb{R})$, and let $g : \mathbb{R} \to \mathbb{R}$ be a smooth function of period 1 and $\int_0^1 g(x) \, dx = 0$. Find

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)g(nx) \, dx.$$

Hint: You may use the fact that step functions are dense in $L^1(\mathbb{R})$.

- [5] Let $f: [0,1] \to [0,1]$ be continuously differentiable and satisfy f(0) = 0, f(1) = 1.
 - (a) Show that the Lebesgue measure of

$$f\Big(\{x \in [0,1] : |f'(x)| < 1/m\}\Big)$$

is less than or equal to 1/m.

(b) Use part (a) to show that there is at least one horizontal line $y = y_0 \in [0, 1]$ which is nowhere tangent to the graph of f. Recall that the graph of f is $\{(x, f(x)) : x \in [0, 1]\}$.

- [6] Let X,Y, and Z be metric spaces and $f:X\to Y$ and $g:Y\to Z$ be maps. Assume further that
 - X is compact;
 - $\bullet~f$ is surjective and continuous; and
 - $g \circ f$ is continuous.

Show that g is continuous.

[7] Let H be a real Hilbert space with norm $\| \|$ and inner product \langle , \rangle . Assume that $B: H \times H \to \mathbb{R}$ is bilinear (that is, B(x, y) is linear in x for any fixed y and is linear in y for any fixed x). Assume further that there are positive constants C_1 and C_2 such that

$$|B(x,y)| \leq C_1 ||x|| ||y|| \quad x \in H, y \in H; |B(x,x)| \geq C_2 ||x||^2 \quad x \in H.$$

- (a) Show that there is a bounded linear operator $A: H \to H$ such that $B(x, y) = \langle Ax, y \rangle$ for all $x, y \in H$.
- (b) Show that the operator A is one-to-one and onto.

- [8] Let X be a complex Banach space, $I: X \to X$ denote the identity, and $S, T: X \to X$ be bounded linear operators. Denote by $\sigma(A) \subset \mathbb{C}$ the spectrum of operator A.
 - (a) Show that I ST has a bounded inverse if and only if I TS has a bounded inverse.
 - (b) Show that $\sigma(ST) \setminus \{0\} = \sigma(TS) \setminus \{0\}.$
 - (c) Show that $ST TS \neq I$.

Algebra Exam

- 1. Let $n \ge 5$. Prove the following:
 - (a) The only non-trivial normal subgroups of S_n is A_n .
 - (b) S_n has no subgroup of index r, where 2 < r < n.
 - (c) List the normal subgroups of S_4 .

- 2. (a) Let H be a proper subgroup of a finite group G. Show that G is not union of all conjugates of H.
 - (b) Give an example of a group G, having a subgroup H, and an element a, such that $aHa^{-1} \subset H$, but $aHa^{-1} \neq H$.

- 3. A commutative ring A is called a Boolean ring if $x^2 = x$ for all $x \in A$.
 - (a) Prove that if a Boolean ring contains no divisors of 0 it is either $\{0\}$ or is isomorphic to $\mathbb{Z}/(2)$. Deduce that in a Boolean ring every prime ideal is maximal.
 - (b) Prove that in a Boolean ring every ideal $I \neq A$ is the intersection of the prime ideals containing I.

- 4. (a) Let R be a commutative ring with identity. Prove that every proper ideal I of R is contained in some maximal proper ideal.
 - (b) Let k be a field, R = k[x, y] and $I = (x^2 + y^2 1)$. Exhibit a maximal proper ideal containing I. Prove your claim.

- 5. Let f be a polynomial of degree n with coefficients in a field k of characteristic 0.
 - (a) What is meant by a splitting field of f ?
 - (b) Let L be a splitting field of f over k. Prove that [L:k] is a divisor of n!.

- 6. Let F_q denote the finite field with q elements. For a prime p, consider the field F_{p^n} containing F_p as a subfield.
 - (a) Prove that the group of automorphisms of F_{p^n} is cyclic of order n.
 - (b) What is meant by a separable field extension ?
 - (c) What is meant by a normal field extension ?
 - (d) Is the field extension F_{p^n} over F_p separable and/or normal ?

7. Prove that a real quadratic form $Q(X_1, \ldots, X_n)$ can always be reduced to the form, $Q(X_1, \ldots, X_n) = \lambda_1 X_1^2 + \cdots + \lambda_n X_n^2$, with $\lambda_i \in \mathbb{R}$, using a linear change in co-ordinates. 8. Recall that $SL(n, \mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) | \det(A) = 1\}$ and $sl(n, \mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) | \operatorname{tr}(A) = 0\}$. Prove that, $\exp(tA) \in SL(n, \mathbb{R})$ for all $t \in \mathbb{R}$ if and only if $A \in sl(n, \mathbb{R})$.