Real Analysis Exam

[1] For $\varepsilon>0$ and $k>0$, denote by $A(k, \varepsilon)$ the set of $x \in \mathbb{R}$ such that

$$
\left|x-\frac{p}{q}\right| \geq \frac{1}{k|q|^{2+\varepsilon}} \quad \text { for any integers } p, q \text { with } q \neq 0
$$

Show that $\mathbb{R} \backslash \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of Lebesgue measure zero.
[2] Fix an enumeration of all rational numbers: $r_{1}, r_{2}, r_{3}, \cdots$. For $x \in \mathbb{R}$, define

$$
f(x)=\text { the cardinal number of the set }\left\{n:\left|x-r_{n}\right| \leq \frac{1}{2^{n}}\right\}
$$

(a) Show that f is Lebesgue measurable.
(b) Evaluate $\int_{\mathbb{R}} f(x) d x$.
[3] Let X be a set and \mathcal{M} a σ-algebra of subsets of X (i.e., $\emptyset, X \in \mathcal{M}$ and \mathcal{M} is closed under taking complements and countable unions of sets in \mathcal{M}).
(a) If μ is an extended real valued function on \mathcal{M}, what conditions must μ satisfy in order to be called a measure?
(b) Take $X=\mathbb{R}^{n}$ and let \mathcal{M} be the set of all subsets of \mathbb{R}^{n}. Is \mathcal{M} a σ-algebra?
(c) With X and \mathcal{M} as in (b) above, let $d \in[0, n]$ and define d-dimensional Hausdorff measure $\mathcal{H}^{d}: \mathcal{M} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{H}^{d}(A)=\lim _{r \searrow 0}\left(\inf \left\{\sum_{j=1}^{\infty}\left[\operatorname{diam}\left(A_{j}\right)\right]^{d}: A \subset \cup_{j=1}^{\infty} A_{j}, \operatorname{diam}\left(A_{j}\right) \leq r\right\}\right) \tag{1}
\end{equation*}
$$

Here $\operatorname{diam}\left(A_{j}\right)=\sup \left\{\|x-y\|: x, y \in A_{j}\right\}$ is the diameter of A_{j}. Show that the limit in (1), and hence \mathcal{H}^{d}, is well defined.
(d) Is \mathcal{H}^{1} a measure? Justify your answer.
[4] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be in $L^{1}(\mathbb{R})$, and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function of period 1 and $\int_{0}^{1} g(x) d x=0$. Find

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) g(n x) d x
$$

Hint: You may use the fact that step functions are dense in $L^{1}(\mathbb{R})$.
[5] Let $f:[0,1] \rightarrow[0,1]$ be continuously differentiable and satisfy $f(0)=0, f(1)=1$.
(a) Show that the Lebesgue measure of

$$
f\left(\left\{x \in[0,1]:\left|f^{\prime}(x)\right|<1 / m\right\}\right)
$$

is less than or equal to $1 / \mathrm{m}$.
(b) Use part (a) to show that there is at least one horizontal line $y=y_{0} \in[0,1]$ which is nowhere tangent to the graph of f. Recall that the graph of f is $\{(x, f(x)): x \in$ $[0,1]\}$.
[6] Let X, Y, and Z be metric spaces and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps. Assume further that

- X is compact;
- f is surjective and continuous; and
- $g \circ f$ is continuous.

Show that g is continuous.
[7] Let H be a real Hilbert space with norm $\|\|$ and inner product \langle,$\rangle . Assume that$ $B: H \times H \rightarrow \mathbb{R}$ is bilinear (that is, $B(x, y)$ is linear in x for any fixed y and is linear in y for any fixed x). Assume further that there are positive constants C_{1} and C_{2} such that

$$
\begin{aligned}
|B(x, y)| & \leq C_{1}\|x\|\|y\| \quad x \in H, y \in H \\
|B(x, x)| & \geq C_{2}\|x\|^{2} \quad x \in H
\end{aligned}
$$

(a) Show that there is a bounded linear operator $A: H \rightarrow H$ such that $B(x, y)=\langle A x, y\rangle$ for all $x, y \in H$.
(b) Show that the operator A is one-to-one and onto.
[8] Let X be a complex Banach space, $I: X \rightarrow X$ denote the identity, and $S, T: X \rightarrow X$ be bounded linear operators. Denote by $\sigma(A) \subset \mathbb{C}$ the spectrum of operator A.
(a) Show that $I-S T$ has a bounded inverse if and only if $I-T S$ has a bounded inverse.
(b) Show that $\sigma(S T) \backslash\{0\}=\sigma(T S) \backslash\{0\}$.
(c) Show that $S T-T S \neq I$.

Algebra Exam

1. Let $n \geq 5$. Prove the following:
(a) The only non-trivial normal subgroups of S_{n} is A_{n}.
(b) S_{n} has no subgroup of index r, where $2<r<n$.
(c) List the normal subgroups of S_{4}.
2. (a) Let H be a proper subgroup of a finite group G. Show that G is not union of all conjugates of H.
(b) Give an example of a group G, having a subgroup H, and an element a, such that $a H a^{-1} \subset H$, but $a H a^{-1} \neq H$.
3. A commutative ring A is called a Boolean ring if $x^{2}=x$ for all $x \in A$.
(a) Prove that if a Boolean ring contains no divisors of 0 it is either $\{0\}$ or is isomorphic to $\mathbb{Z} /(2)$. Deduce that in a Boolean ring every prime ideal is maximal.
(b) Prove that in a Boolean ring every ideal $I \neq A$ is the intersection of the prime ideals containing I.
4. (a) Let R be a commutative ring with identity. Prove that every proper ideal I of R is contained in some maximal proper ideal.
(b) Let k be a field, $R=k[x, y]$ and $I=\left(x^{2}+y^{2}-1\right)$. Exhibit a maximal proper ideal containing I. Prove your claim.
5. Let f be a polynomial of degree n with coefficients in a field k of characteristic 0 .
(a) What is meant by a splitting field of f ?
(b) Let L be a splitting field of f over k. Prove that $[L: k]$ is a divisor of n !.
6. Let F_{q} denote the finite field with q elements. For a prime p, consider the field $F_{p^{n}}$ containing F_{p} as a subfield.
(a) Prove that the group of automorphisms of $F_{p^{n}}$ is cyclic of order n.
(b) What is meant by a separable field extension?
(c) What is meant by a normal field extension ?
(d) Is the field extension $F_{p^{n}}$ over F_{p} separable and/or normal ?
7. Prove that a real quadratic form $Q\left(X_{1}, \ldots, X_{n}\right)$ can always be reduced to the form, $Q\left(X_{1}, \ldots, X_{n}\right)=\lambda_{1} X_{1}^{2}+\cdots+\lambda_{n} X_{n}^{2}$, with $\lambda_{i} \in \mathbb{R}$, using a linear change in co-ordinates.
8. Recall that $S L(n, \mathbb{R})=\left\{A \in M_{n \times n}(\mathbb{R}) \mid \operatorname{det}(A)=1\right\}$ and $s l(n, \mathbb{R})=\left\{A \in M_{n \times n}(\mathbb{R}) \mid \operatorname{tr}(A)=\right.$ $0\}$. Prove that, $\exp (t A) \in S L(n, \mathbb{R})$ for all $t \in \mathbb{R}$ if and only if $A \in \operatorname{sl}(n, \mathbb{R})$.
