by XYC

_____ Good luck! _____

[1] For $\varepsilon > 0$ and k > 0, denote by $A(k, \varepsilon)$ the set of $x \in \mathbb{R}$ such that

$$\left|x - \frac{p}{q}\right| \ge \frac{1}{k |q|^{2+\varepsilon}}$$
 for any integers p, q with $q \neq 0$.

Show that $\mathbb{R} \setminus \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of Lebesgue measure zero.

Fix an arbitrary integer L > 0. We'll show that $[-L, L] \setminus \bigcup_{k=1}^{\infty} A(k, \varepsilon)$ is of measure zero. Let $k \ge 1$. For any $x \in [-L, L] \setminus A(k, \varepsilon)$, there are integers p, q (q > 0) such that

$$\left|x - \frac{p}{q}\right| < \frac{1}{kq^{2+\varepsilon}}.$$

We have

$$\left|\frac{p}{q}\right| \le |x| + \left|x - \frac{p}{q}\right| \le L + \frac{1}{kq^{2+\varepsilon}}.$$

Hence,

$$|p| \le qL + \frac{1}{kq^{1+\varepsilon}} < qL + 1.$$

This shows

$$[-L,L] \setminus A(k,\varepsilon) \subset \bigcup_{q=1}^{\infty} \bigcup_{p=-qL}^{qL} \left(\frac{p}{q} - \frac{1}{kq^{2+\varepsilon}}, \frac{p}{q} + \frac{1}{kq^{2+\varepsilon}} \right),$$

and thus

$$\mu\Big([-L,L] \setminus A(k,\varepsilon)\Big) \le \sum_{q=1}^{\infty} \sum_{p=-qL}^{qL} \frac{2}{kq^{2+\varepsilon}} = \frac{1}{k} \sum_{q=1}^{\infty} \frac{2(2qL+1)}{q^{2+\varepsilon}}$$

The infinite series on the right hand side is convergent for $\varepsilon > 0$. It follows that

$$\mu\left(\left[-L,L\right]\setminus\bigcup_{k=1}^{\infty}A(k,\varepsilon)\right)=\mu\left(\bigcap_{k=1}^{\infty}\left(\left[-L,L\right]\setminus A(k,\varepsilon)\right)\right)\leq\inf_{k\geq 1}\left(\frac{1}{k}\sum_{q=1}^{\infty}\frac{2(2qL+1)}{q^{2+\varepsilon}}\right)=0.$$

[2] Fix an enumeration of all rational numbers: r_1, r_2, r_3, \cdots . For $x \in \mathbb{R}$, define

$$f(x)$$
 = the cardinal number of the set $\{r_n | |x - r_n| \le \frac{1}{2^n}\}$.

- (a) Show that f is Lebesgue measurable.
- (b) Evaluate $\int_{\mathbb{R}} f(x) dx$.

Part (a):

Let $f_n : \mathbb{R} \to \mathbb{R}$ be the characteristic function of the interval $[r_n - 2^{-n}, r_n + 2^{-n}]$:

$$f(x) = \begin{cases} 1 & |x - r_n| \le 2^{-n}, \\ 0 & |x - r_n| > 2^{-n}. \end{cases}$$

Then, $\sum_{n=1}^{N} f_n$ are step functions and monotonically increases to the given function f as $N \to \infty$:

$$f(x) = \sum_{n=1}^{\infty} f_n(x) = \lim_{N \to \infty} \sum_{n=1}^{N} f_n(x).$$

Thus, the limit f is measurable.

Part (b):

Compute

$$\sum_{n=1}^{\infty} \|f_n\|_{L^1(\mathbb{R})} = \sum_{n=1}^{\infty} \int_{\mathbb{R}} f_n(x) dx = \sum_{n=1}^{\infty} \int_{r_n - 2^{-n}}^{r_n + 2^{-n}} 1 \, dx = \sum_{n=1}^{\infty} 2^{1-n} = 2.$$

By Lebesgue's monotone convergence theorem (or by the completeness of $L^1(\mathbb{R})$), $f = \sum f_n$ is Lebesgue integrable and

$$\int_{\mathbb{R}} f(x)dx = \sum_{n=1}^{\infty} \int_{\mathbb{R}} f_n(x)dx = 2.$$

Solutions

John McCuan

August 27, 2002

3. Let X be a set and \mathcal{M} a σ -algebra of subsets of X (i.e., $\phi, X \in \mathcal{M}$ and \mathcal{M} is closed under taking complements and countable unions of sets in \mathcal{M}).

(a) If μ is an extended real valued function on \mathcal{M} , what conditions must μ satisfy in order to be called a *measure*?

Answer: One usually requires that μ be nonnegative, countably additive $(\mu(\cup A_j) = \sum \mu(A_j)$ where the A_j are disjoint sets), and satisfy $\mu(\phi) = 0$.

It is also acceptable to require only countable subadditivity $(\mu(\cup A_j) \leq \sum \mu(A_j))$. This is sometimes called an *outer measure*.

(b) Take $X = \mathbb{R}^n$ and let \mathcal{M} be the set of all subsets of \mathbb{R}^n . Is \mathcal{M} a σ -algebra?

Answer: Yes clearly, since all conditions required of a σ -algebra involve nothing more than having certain sets in \mathcal{M} ; all possible sets are in \mathcal{M} .

(c) With X and \mathcal{M} as in (b) above, let $d \in [0, n]$ and define d-dimensional Hausdorff measure $\mathcal{H}^d : \mathcal{M} \to \mathbb{R}$ by

$$\mathcal{H}^{d}(A) = \liminf_{r \searrow 0} \left\{ \sum_{j=1}^{\infty} \left[\operatorname{diam}(A_{j}) \right]^{d} : A \subset \bigcup_{j=1}^{\infty} A_{j}, \ \operatorname{diam}(A_{j}) \le r \right\}.$$
(1)

Here, diam $(A_j) = \sup\{||x - y|| : x, y \in A_j\}$ is the diameter of A_j . Show that the limit in (1), and hence \mathcal{H}^d , is well defined.

Solution: The infemum is a nondecreasing function of r. Therefore, the limit clearly exists. Technically, one could call the sets appearing after the limit from something like B(r) and observe that $B(r_1) \subset B(r_2)$ when $r_1 \leq r_2$. The infemum of a subset of $B(r_2)$ must be at least as great as the infimum of $B(r_2)$.

(d) Is \mathcal{H}^1 a measure? Justify your answer.

Answer: According to the first definition, the answer is "no" for the following reason. One of the "big theorems" of real analysis, is that given any *translation invariant* measure on \mathbb{R} for which the measure of an interval is its length, there exists a non-measurable set. Since we have defined \mathcal{H}^d on all subsets, and it's easy to check that \mathcal{H}^d is translation invariant, we do not have a measure, as long as the measure of an interval is its length (actually any finite nonzero number). It is easily checked that this holds for \mathcal{H}^1 .

On the other hand, if you take the second definition (outer measure), then \mathcal{H}^d is one, and one has more work to do. First of all, $\mathcal{H}^d_r = \inf B(r)$ is a measure. The only thing to check, really, is subadditivity on an arbitrary sequence of sets A_j . Let $\{C_{jk}\}_k$ be any countable cover of A_j by sets with diameter less than r. Since the doubly indexed collection $\{C_{jk}\}_{k,j}$ covers the union, we have

$$\mathcal{H}_r^d(\cup A_j) \leq \sum_k \sum_j \left[\operatorname{diam}(C_{jk})\right]^d.$$

Notice that the left side doesn't depend on the C_{jk} . Thus, we can take infema over collections of $\{C_{jk}\}_k$ one j at a time to obtain

$$\mathcal{H}_{r}^{d}(\cup A_{j}) \leq \sum_{j} \mathcal{H}_{r}^{d}(A_{j}).$$

$$\tag{2}$$

Since \mathcal{H}_r^d satisfies (2), we can use the monotonicity of $\mathcal{H}_r^d = \inf B(r)$ in r to obtain

$$\mathcal{H}_r^d(\cup A_j) \le \sum_j \mathcal{H}^d(\cup A_j)$$

Notice that the right side is independent of r. Taking the limit as $r \to 0$ gives the result.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be in $L^1(\mathbb{R})$, and let $g : \mathbb{R} \to \mathbb{R}$ be a smooth function of period 1 with $\int_0^1 g(x) dx = 0$. Find

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)g(nx)dx.$$

Hint: You may use the fact that step functions are dense in L^1 .

Solution: This is a version of the Riemann-Lebesge Theorem.

Let $\epsilon > 0$. Let f_{ϵ} be a step function with

$$\int |f_{\epsilon} - f| < \epsilon,$$

and let M > 0 such that

$$\left|\int_{-M}^{M} f(x) \, dx - \int_{-\infty}^{\infty} f(x) \, dx\right| < \epsilon.$$

For every ϵ ,

$$\begin{aligned} \left| \int_{-\infty}^{\infty} f(x)g(nx) \, dx \right| &\leq \left| \int_{-M}^{M} f(x)g(nx) \, dx - \int_{-\infty}^{\infty} f_{\epsilon}g(x)g(nx) \, dx \right| \\ &+ \left| \int_{-M}^{M} f_{\epsilon}(x)g(nx) \, dx \right| \\ &\leq 2G\epsilon + \left| \int_{-M}^{M} f_{\epsilon}(x)g(nx) \, dx \right| \end{aligned}$$

where $G = \sup_{x \in \mathbb{R}} |g(x)|$. We can write

$$f_{\epsilon}(x) = \sum_{i=1}^{k} a_i \chi_{[x_{i-1}, x_i]}(x)$$

on [-M, M], for some constants a_1, \ldots, a_k where $x_0 = -M < x_1 < \cdots < d_k$ $x_k = M$. Then

$$\left| \int_{-M}^{M} f_{\epsilon}(x) g(nx) \, dx \right| \leq \sum_{i=1}^{k} |a_i| \left| \int_{x_{i-1}}^{x_i} g(nx) \, dx \right|$$

Changing variables, we get

$$\begin{aligned} \left| \int_{x_{i-1}}^{x_i} g(nx) \, dx \right| &= \left| \frac{1}{n} \int_{nx_{i-1}}^{nx_i} g(\xi) \, d\xi \right| \\ &= \left| \frac{1}{n} \right| \int_{nx_{i-1}}^{\lceil nx_{i-1} \rceil} g(\xi) \, d\xi + \int_{\lfloor nx_i \rfloor}^{nx_i} g(\xi) \, d\xi \end{aligned}$$

where $\lceil \ \rceil$ and $\lfloor \ \rfloor$ are the "least integer greater than" and "greatest integer less than" functions respectively. Therefore,

$$\limsup_{n \to \infty} \left| \int_{-M}^{M} f_{\epsilon}(x) g(nx) \, dx \right| \leq k \max\{a_i\} \limsup_{n \to \infty} \left(\frac{1}{n} 2G \right) \\ = 0.$$

Thus, for every $\epsilon > 0$,

$$\limsup_{n \to \infty} \left| \int_{-\infty}^{\infty} f(x) g(nx) \, dx \right| \le 2G\epsilon.$$

Since ϵ is arbitrary,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x)g(nx)dx = 0.$$

5. Let $f : [0,1] \to [0,1]$ be continuously differentiable and satisfy f(0) = 0, f(1) = 1.

(a) Show that the Lebesgue measure of

$$f\Big(\{x \in [0,1] : |f'(x)| < 1/m\}\Big)$$

is less than or equal to 1/m.

(b) Use part (a) to show that there is at least one horizontal line $y = y_0 \in [0, 1]$ which is nowhere tangent to the graph of f. Recall that the graph of f is $\{(x, f(x)) : x \in [0, 1]\}$.

Solution: (This is a special case of Sard's Theorem.)

We will show that $B = \{f(x) : x \in [0, 1], f'(x) = 0\}$ has measure zero. (Note that any $y_0 \notin B$ satisfies the requirements of the problem since whenever $x \in [0, 1]$ and $f(x) = y_0 \notin B$, we have $y_0 \in [0, 1]$ and must have $f'(x) \neq 0$.)

We first show that $B = \bigcap_{m=1}^{\infty} B_m$ where $B_m = f(A_m)$ and $A_m = \{x \in [0,1] : |f'(x)| < 1/m\}$ is the set given in the hint. On the one hand, if $y \in B$, then y = f(x) for some $x \in [0,1]$ with f'(x) = 0. Clearly, $x \in A_m$ for all m, so $B \subset \bigcap B_m$. On the other hand, if $y \in \bigcap B_m$, then $y = f(x_m)$ for some $x_m \in [0,1]$ with $f'(x_m) = 0$. Since [0,1] is compact, we can take a converging subsequence $x_{m_j} \to x_0 \in [0,1]$ and by continuity $f(x_0) = y$ and $f'(x_0) = 0$. This means $y \in B$.

The estimate of the measure of $B_m = f(A_m)$ comes from the change of variables formula $\int_{f(A)} 1 = \int_A |f'|$. Strictly speaking, this only holds on sets where f' does not change sign, but we can split $f(A_m)$ into $\{f(x) : x \in [0,1], 0 \le f'(x) < 1/m\}$ and $\{f(x) : x \in [0,1], -1/m \le f'(x) \le 0\}$, and we still get an inequality:

$$\mathcal{L}(B_m) = \mathcal{L}(f(A_m)) = \int_{f(A_m)} 1 \le \int_{A_m} |f'| \le 1/m.$$

Since $B_{m+1} \subset B_m$,

$$\mathcal{L}(B) = \lim_{m \to \infty} \mathcal{L}(B_m) = 0.$$

- [6] Let X, Y, and Z be metric spaces and $f: X \to Y$ and $g: Y \to Z$ be maps. Assume further that
 - X is compact;
 - f is surjective and continuous; and
 - $g \circ f$ is continuous.

Show that g is continuous.

Proof 1: Supposing that g is discontinuous at $y \in Y$, we'll derive a contradiction. From the discontinuity, there is a point sequence

(*)
$$y_n \to y \text{ in } Y$$

but $g(y_n) \not\rightarrow g(y)$ in Z. By taking a subsequence if necessary, we may, without loss of generality, assume that

(**)
$$d(g(y_n), g(y)) \ge \varepsilon_0 > 0 \quad \text{for all } n,$$

where ε_0 is a positive constant.

Since f is surjective, for every y_n there is a point $x_n \in X$ such that $f(x_n) = y_n$. Since X is compact, we can subtract a convergent subsequence $\{x_{k_n}\}: x_{k_n} \to x$ in X. By the continuity of f and $g \circ f$, we have

$$\begin{aligned} (***) & y_{k_n} = f(x_{k_n}) \to f(x), \\ (****) & g(y_{k_n}) = g \circ f(x_{k_n}) \to g \circ f(x). \end{aligned}$$

By (*) and (***), we get y = f(x). Combined with (****), it follows that $g(y_{k_n}) \to g(y)$, contradicting the supposition (**).

Proof 2: Only need to show that for any closed subset $C \,\subset Z$, $g^{-1}(C)$ is closed in Y. By the continuity of $g \circ f$, $(g \circ f)^{-1}(C)$ is a closed subset of X. Since any closed subset of a compact space is compact, $(g \circ f)^{-1}(C)$ is compact. Since the continuous image of a compact set is compact, $f((g \circ f)^{-1}(C))$ is compact. Since any compact subset of a Hausdorff space is closed, $f((g \circ f)^{-1}(C))$ is closed in Y. The surjectivity of f implies $f((g \circ f)^{-1}(C)) = g^{-1}(C)$. Therefore, $g^{-1}(C)$ is a closed subset of Y. [7] Let H be a real Hilbert space with norm $\| \|$ and inner product \langle , \rangle . Assume that $B: H \times H \to \mathbb{R}$ is bilinear (that is, B(x, y) is linear in x for any fixed y and is linear in y for any fixed x). Assume further that there are positive constants C_1 and C_2 such that

$$|B(x,y)| \le C_1 ||x|| ||y||$$
 $x \in H, y \in H;$
 $|B(x,x)| \ge C_2 ||x||^2$ $x \in H.$

- (a) Show that there is a bounded linear operator $A: H \to H$ such that $B(x, y) = \langle Ax, y \rangle$ for all $x, y \in H$.
- (b) Show that the operator A is one-to-one and onto.

Part (a): For any fixed $x \in H$, the correspondence $H \to \mathbb{R}$, $y \mapsto B(x, y)$ is a bounded linear functional with norm bound $||B(x, \cdot)|| \leq C_1 ||x||$. By Riesz's representation theorem, there exists a unique $A(x) \in H$ such that

$$B(x,y) = \langle A(x), y \rangle \quad \text{for all } y \in H.$$
(*)

This defines an operator $A: H \to H$.

Let's first show that A is linear. For any $x_1, x_2 \in H$, $c_1, c_2 \in \mathbb{R}$, and any $y \in H$, we have

$$\langle A(c_1x_1 + c_2x_2), y \rangle = B(c_1x_1 + c_2x_2, y)$$
 (by (*))

$$= c_1B(x_1, y) + c_2B(x_2, y)$$
 (since *B* is bilinear)

$$= c_1\langle A(x_1), y \rangle + c_2\langle A(x_2), y \rangle$$
 (by (*))

$$= \langle c_1A(x_1) + c_2A(x_2), y \rangle$$
 (since the inner product is bilinear).

Since $y \in H$ is arbitrary, it follows that $A(c_1x_1 + c_2x_2) = c_1A(x_1) + c_2A(x_2)$.

Next we prove the boundedness of A. For any $x \in H$, we have

$$||Ax||^{2} = |\langle Ax, Ax \rangle| = |B(x, Ax)| \le C_{1}||x|| ||Ax||,$$

or, equivalently, $||Ax|| \leq C_1 ||x||$. Thus, A is a bounded operator and $||A|| \leq C_1$.

Part (b): Injectivity: We shall show Kernel(A) = 0. Let Ax = 0. We have

$$0 = |\langle Ax, x \rangle| = |B(x, x)| \ge C_2 ||x||^2.$$

Thus, x = 0.

Surjectivity: We need to show Range(A) = H. Since A is continuous, Range(A) is a closed subspace of the Hilbert space H. It suffices to prove that the orthogonal complement of Range(A) is 0. Let x be in the orthogonal complement. Then

$$0 = |\langle Ax, x \rangle| = |B(x, x)| \ge C_2 ||x||^2.$$

Thus, x = 0.

- [8] Let X be a complex Banach space, $I: X \to X$ denote the identity, and $S, T: X \to X$ be bounded linear operators. Denote by $\sigma(A) \subset \mathbb{C}$ the spectrum of operator A.
 - (a) Show that I ST has a bounded inverse if and only if I TS has a bounded inverse.
 - (b) Show that $\sigma(ST) \setminus \{0\} = \sigma(TS) \setminus \{0\}.$
 - (c) Show that $ST TS \neq I$.

Part (a): By summetry, it suffices to consider the "if" part. Assuming that I - TS has a bounded inverse, we shall prove that I - ST has a bounded inverse too.

We show that the bounded operator $I + S(I - TS)^{-1}T$ gives the inverse of I - ST:

$$\begin{split} \left[I + S(I - TS)^{-1}T\right] (I - ST) \\ &= I - ST + S(I - TS)^{-1}T - S(I - TS)^{-1}TST \\ &= I - ST + S(I - TS)^{-1}T + S(I - TS)^{-1}\left[-I + (I - TS)\right]T \\ &= I - ST + S(I - TS)^{-1}T - S(I - TS)^{-1}T + S(I - TS)^{-1}(I - TS)T \\ &= I, \quad \text{(the 2nd term + the last term =0, and the 3rd term + 4th term =0)} \\ \left(I - ST\right) \left[I + S(I - TS)^{-1}T\right] \\ &= I - ST + S(I - TS)^{-1}T - STS(I - TS)^{-1}T \\ &= I - ST + S(I - TS)^{-1}T + S\left[-I + (I - TS)\right](I - TS)^{-1}T \\ &= I - ST + S(I - TS)^{-1}T - S(I - TS)^{-1}T + ST \\ &= I - ST + S(I - TS)^{-1}T - S(I - TS)^{-1}T + ST \\ &= I. \end{split}$$

Part (b): For $c \in \mathbb{C} \setminus 0$, we have the following equivalence:

$$c \in \sigma(TS) \iff cI - TS = c (I - c^{-1}TS) \text{ has no bounded inverse}$$

$$\iff I - c^{-1}TS \text{ has no bounded inverse}$$

$$\iff I - S(c^{-1}T) = I - c^{-1}ST \text{ has no bounded inverse} \qquad \text{(by Part (a))}$$

$$\iff cI - ST \text{ has no bounded inverse}$$

$$\iff c \in \sigma(ST).$$

Part (c): Suppose that ST - TS = I. Since ST and TS are bounded operators in a complex Banach space X, $\sigma(ST)$ and $\sigma(TS)$ are nonempty compact sets.

If $0 \in \sigma(TS)$, then $1 \in \sigma(ST)$ since ST = I + TS. By part (b), we have $1 \in \sigma(TS)$. Using ST = I + TS again, we see $2 \in \sigma(ST)$. Repeating this argument, we infer that all positive integers are in $\sigma(ST)$, contradicting the boundedness of ST.

If $0 \in \sigma(ST)$, a similar argument shows that all negative integers are in $\sigma(TS)$, a contradiction. It remains to consider the case where $0 \notin \sigma(TS)$ and $0 \notin \sigma(ST)$. In this case, Part (b) implies $\sigma(TS) = \sigma(ST)$. Combined with the assumption ST = I + TS, it follows that the nonempty set $\sigma(ST)$ has a translational invariance:

$$\sigma(ST) = 1 + \sigma(TS) = 1 + \sigma(ST).$$

In particular, $\sigma(ST)$ has to be unbounded. This contradicts the boundedness of ST.