
Real Analysis Comprehensive Exam Fall 2002

by XYC

Good luck!

[1] For ε > 0 and k > 0, denote by A(k, ε) the set of x ∈ R such that∣∣∣∣x − p

q

∣∣∣∣ ≥ 1

k |q|2+ε
for any integers p, q with q 6= 0.

Show that R \⋃∞
k=1 A(k, ε) is of Lebesgue measure zero.

Fix an arbitrary integer L > 0. We’ll show that [−L, L] \⋃∞
k=1 A(k, ε) is of measure zero.

Let k ≥ 1. For any x ∈ [−L, L] \ A(k, ε), there are integers p, q (q > 0) such that∣∣∣∣x − p

q

∣∣∣∣ < 1

kq2+ε
.

We have ∣∣∣∣pq
∣∣∣∣ ≤ |x| +

∣∣∣∣x − p

q

∣∣∣∣ ≤ L +
1

kq2+ε
.

Hence,

|p| ≤ qL +
1

kq1+ε
< qL + 1.

This shows

[−L, L] \ A(k, ε) ⊂
∞⋃

q=1

qL⋃
p=−qL

(
p

q
− 1

kq2+ε
,
p

q
+

1

kq2+ε

)
,

and thus

µ
(
[−L, L] \ A(k, ε)

)
≤

∞∑
q=1

qL∑
p=−qL

2

kq2+ε
=

1

k

∞∑
q=1

2(2qL + 1)

q2+ε
.

The infinite series on the right hand side is convergent for ε > 0. It follows that

µ

(
[−L, L] \

∞⋃
k=1

A(k, ε)

)
= µ

( ∞⋂
k=1

(
[−L, L] \ A(k, ε)

))
≤ inf

k≥1

(
1

k

∞∑
q=1

2(2qL + 1)

q2+ε

)
= 0.



[2] Fix an enumeration of all rational numbers: r1, r2, r3, · · · . For x ∈ R, define

f(x) = the cardinal number of the set {rn| |x − rn| ≤ 1

2n
}.

(a) Show that f is Lebesgue measurable.

(b) Evaluate

∫
R

f(x)dx.

Part (a):
Let fn : R → R be the characteristic function of the interval [rn − 2−n, rn + 2−n]:

f(x) =

{
1 |x − rn| ≤ 2−n,
0 |x − rn| > 2−n.

Then,
∑N

n=1 fn are step functions and monotonically increases to the given function f as N → ∞:

f(x) =

∞∑
n=1

fn(x) = lim
N→∞

N∑
n=1

fn(x).

Thus, the limit f is measurable.

Part (b):
Compute

∞∑
n=1

‖fn‖L1(R) =
∞∑

n=1

∫
R

fn(x)dx =
∞∑

n=1

∫ rn+2−n

rn−2−n

1 dx =
∞∑

n=1

21−n = 2.

By Lebesgue’s monotone convergence theorem (or by the completeness of L1(R)), f =
∑

fn is
Lebesgue integrable and ∫

R

f(x)dx =

∞∑
n=1

∫
R

fn(x)dx = 2.
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3. Let X be a set and M a σ-algebra of subsets of X (i.e., φ, X ∈ M and
M is closed under taking complements and countable unions of sets in M).

(a) If µ is an extended real valued function on M, what conditions must µ
satisfy in order to be called a measure?

Answer: One usually requires that µ be nonnegative, countably additive
(µ(∪Aj) =

∑
µ(Aj) where the Aj are disjoint sets), and satisfy µ(φ) = 0.

It is also acceptable to require only countable subadditivity (µ(∪Aj) ≤∑
µ(Aj)). This is sometimes called an outer measure.

(b) Take X = Rn and let M be the set of all subsets of Rn. Is M a σ-algebra?

Answer: Yes clearly, since all conditions required of a σ-algebra involve noth-
ing more than having certain sets in M; all possible sets are in M.

(c) With X and M as in (b) above, let d ∈ [0, n] and define d-dimensional
Hausdorff measure Hd : M → R by

Hd(A) = lim
r↘0

inf

{ ∞∑
j=1

[diam(Aj)]
d : A ⊂ ∪∞

j=1Aj, diam(Aj) ≤ r

}
. (1)

Here, diam(Aj) = sup{‖x− y‖ : x, y ∈ Aj} is the diameter of Aj. Show that
the limit in (1), and hence Hd, is well defined.
Solution: The infemum is a nondecreasing function of r. Therefore, the limit
clearly exists. Technically, one could call the sets appearing after the lim inf
something like B(r) and observe that B(r1) ⊂ B(r2) when r1 ≤ r2. The
infemum of a subset of B(r2) must be at least as great as the infimum of
B(r2).

(d) Is H1 a measure? Justify your answer.
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Answer: According to the first definition, the answer is “no” for the follow-
ing reason. One of the “big theorems” of real analysis, is that given any
translation invariant measure on R for which the measure of an interval is
its length, there exists a non-measurable set. Since we have defined Hd on
all subsets, and it’s easy to check that Hd is translation invariant, we do not
have a measure, as long as the measure of an interval is its length (actually
any finite nonzero number). It is easily checked that this holds for H1.

On the other hand, if you take the second definition (outer measure),
then Hd is one, and one has more work to do. First of all, Hd

r = inf B(r) is
a measure. The only thing to check, really, is subadditivity on an arbitrary
sequence of sets Aj . Let {Cjk}k be any countable cover of Aj by sets with
diameter less than r. Since the doubly indexed collection {Cjk}k,j covers the
union, we have

Hd
r(∪Aj) ≤

∑
k

∑
j

[diam(Cjk)]
d .

Notice that the left side doesn’t depend on the Cjk. Thus, we can take infema
over collections of {Cjk}k one j at a time to obtain

Hd
r(∪Aj) ≤

∑
j

Hd
r(Aj). (2)

Since Hd
r satisfies (2), we can use the monotonicity of Hd

r = inf B(r) in r
to obtain

Hd
r(∪Aj) ≤

∑
j

Hd(∪Aj).

Notice that the right side is independent of r. Taking the limit as r → 0
gives the result.

4. Let f : R → R be in L1(R), and let g : R → R be a smooth function of

period 1 with
∫ 1

0
g(x)dx = 0. Find

lim
n→∞

∫ ∞

−∞
f(x)g(nx)dx.

Hint: You may use the fact that step functions are dense in L1.

Solution: This is a version of the Riemann-Lebesge Theorem.
Let ε > 0. Let fε be a step function with∫

|fε − f | < ε,
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and let M > 0 such that∣∣∣∣
∫ M

−M

f(x) dx −
∫ ∞

−∞
f(x) dx

∣∣∣∣ < ε.

For every ε,∣∣∣∣
∫ ∞

−∞
f(x)g(nx) dx

∣∣∣∣ ≤
∣∣∣∣
∫ M

−M

f(x)g(nx) dx −
∫ ∞

−∞
fεg(x)g(nx) dx

∣∣∣∣
+

∣∣∣∣
∫ M

−M

fε(x)g(nx) dx

∣∣∣∣
≤ 2Gε +

∣∣∣∣
∫ M

−M

fε(x)g(nx) dx

∣∣∣∣
where G = supx∈R

|g(x)|.
We can write

fε(x) =
k∑

i=1

aiχ[xi−1,xi](x)

on [−M, M ], for some constants a1, . . . , ak where x0 = −M < x1 < · · · <
xk = M . Then

∣∣∣∣
∫ M

−M

fε(x)g(nx) dx

∣∣∣∣ ≤
k∑

i=1

|ai|
∣∣∣∣
∫ xi

xi−1

g(nx) dx

∣∣∣∣ .
Changing variables, we get∣∣∣∣

∫ xi

xi−1

g(nx) dx

∣∣∣∣ =

∣∣∣∣ 1n
∫ nxi

nxi−1

g(ξ) dξ

∣∣∣∣
=

1

n

∣∣∣∣∣
∫ dnxi−1e

nxi−1

g(ξ) dξ +

∫ nxi

bnxic
g(ξ) dξ

∣∣∣∣∣
where d e and b c are the “least integer greater than” and “greatest integer
less than” functions respectively. Therefore,

lim sup
n→∞

∣∣∣∣
∫ M

−M

fε(x)g(nx) dx

∣∣∣∣ ≤ k max{ai} lim sup
n→∞

(
1

n
2G

)
= 0.

3



Thus, for every ε > 0,

lim sup
n→∞

∣∣∣∣
∫ ∞

−∞
f(x)g(nx) dx

∣∣∣∣ ≤ 2Gε.

Since ε is arbitrary,

lim
n→∞

∫ ∞

−∞
f(x)g(nx)dx = 0.

5. Let f : [0, 1] → [0, 1] be continuously differentiable and satisfy f(0) = 0,
f(1) = 1.
(a) Show that the Lebesgue measure of

f
(
{x ∈ [0, 1] : |f ′(x)| < 1/m}

)
is less than or equal to 1/m.
(b) Use part (a) to show that there is at least one horizontal line y = y0 ∈
[0, 1] which is nowhere tangent to the graph of f . Recall that the graph of f
is {(x, f(x)) : x ∈ [0, 1]}.
Solution: (This is a special case of Sard’s Theorem.)

We will show that B = {f(x) : x ∈ [0, 1], f ′(x) = 0} has measure zero.
(Note that any y0 /∈ B satisfies the requirements of the problem since when-
ever x ∈ [0, 1] and f(x) = y0 /∈ B, we have y0 ∈ [0, 1] and must have
f ′(x) 6= 0.)

We first show that B = ∩∞
m=1Bm where Bm = f(Am) and Am = {x ∈

[0, 1] : |f ′(x)| < 1/m} is the set given in the hint. On the one hand, if y ∈ B,
then y = f(x) for some x ∈ [0, 1] with f ′(x) = 0. Clearly, x ∈ Am for all
m, so B ⊂ ∩Bm. On the other hand, if y ∈ ∩Bm, then y = f(xm) for some
xm ∈ [0, 1] with f ′(xm) = 0. Since [0, 1] is compact, we can take a converging
subsequence xmj

→ x0 ∈ [0, 1] and by continuity f(x0) = y and f ′(x0) = 0.
This means y ∈ B.

The estimate of the measure of Bm = f(Am) comes from the change of
variables formula

∫
f(A)

1 =
∫

A
|f ′|. Strictly speaking, this only holds on sets

where f ′ does not change sign, but we can split f(Am) into {f(x) : x ∈
[0, 1], 0 ≤ f ′(x) < 1/m} and {f(x) : x ∈ [0, 1],−1/m ≤ f ′(x) ≤ 0}, and we
still get an inequality:

L(Bm) = L(f(Am)) =

∫
f(Am)

1 ≤
∫

Am

|f ′| ≤ 1/m.

4



Since Bm+1 ⊂ Bm,

L(B) = lim
m→∞

L(Bm) = 0.

5



[6] Let X, Y, and Z be metric spaces and f : X → Y and g : Y → Z be maps. Assume further
that

• X is compact;

• f is surjective and continuous; and

• g ◦ f is continuous.

Show that g is continuous.

Proof 1: Supposing that g is discontinuous at y ∈ Y , we’ll derive a contradiction. From the
discontinuity, there is a point sequence

(*) yn → y in Y ,

but g(yn) 6→ g(y) in Z. By taking a subsequence if necessary, we may, without loss of generality,
assume that

(**) d(g(yn), g(y)) ≥ ε0 > 0 for all n,

where ε0 is a positive constant.
Since f is surjective, for every yn there is a point xn ∈ X such that f(xn) = yn. Since X is

compact, we can subtract a convergent subsequence {xkn}: xkn → x in X. By the continuity of f
and g ◦ f , we have

(***) ykn = f(xkn) → f(x),

(****) g(ykn) = g ◦ f(xkn) → g ◦ f(x).

By (*) and (***), we get y = f(x). Combined with (****), it follows that g(ykn) → g(y),
contradicting the supposition (**).

Proof 2: Only need to show that for any closed subset C ⊂ Z, g−1(C) is closed in Y .
By the continuity of g ◦ f , (g ◦ f)−1(C) is a closed subset of X.
Since any closed subset of a compact space is compact, (g ◦ f)−1(C) is compact.

Since the continuous image of a compact set is compact, f
(
(g ◦ f)−1(C)

)
is compact.

Since any compact subset of a Hausdorff space is closed, f
(
(g ◦ f)−1(C)

)
is closed in Y .

The surjectivity of f implies f
(
(g ◦ f)−1(C)

)
= g−1(C).

Therefore, g−1(C) is a closed subset of Y .



[7] Let H be a real Hilbert space with norm ‖ ‖ and inner product 〈 , 〉. Assume that
B : H × H → R is bilinear (that is, B(x, y) is linear in x for any fixed y and is linear in
y for any fixed x). Assume further that there are positive constants C1 and C2 such that

|B(x, y)| ≤ C1‖x‖ ‖y‖ x ∈ H, y ∈ H ;

|B(x, x)| ≥ C2‖x‖2 x ∈ H.

(a) Show that there is a bounded linear operator A : H → H such that B(x, y) = 〈Ax, y〉
for all x, y ∈ H .

(b) Show that the operator A is one-to-one and onto.

Part (a): For any fixed x ∈ H , the correspondence H → R, y 7→ B(x, y) is a bounded linear
functional with norm bound ‖B(x, ·)‖ ≤ C1‖x‖. By Riesz’s representation theorem, there exists a
unique A(x) ∈ H such that

B(x, y) = 〈A(x), y〉 for all y ∈ H. (*)

This defines an operator A : H → H .
Let’s first show that A is linear. For any x1, x2 ∈ H , c1, c2 ∈ R, and any y ∈ H , we have

〈A(c1x1 + c2x2), y〉 = B(c1x1 + c2x2, y) (by (*))

= c1B(x1, y) + c2B(x2, y) (since B is bilinear)

= c1〈A(x1), y〉 + c2〈A(x2), y〉 (by (*))

= 〈c1A(x1) + c2A(x2), y〉 (since the inner product is bilinear).

Since y ∈ H is arbitrary, it follows that A(c1x1 + c2x2) = c1A(x1) + c2A(x2).
Next we prove the boundedness of A. For any x ∈ H , we have

‖Ax‖2 = |〈Ax, Ax〉| = |B(x, Ax)| ≤ C1‖x‖ ‖Ax‖,

or, equivalently, ‖Ax‖ ≤ C1‖x‖. Thus, A is a bounded operator and ‖A‖ ≤ C1.

Part (b): Injectivity: We shall show Kernel(A) = 0. Let Ax = 0. We have

0 = |〈Ax, x〉| = |B(x, x)| ≥ C2‖x‖2.

Thus, x = 0.
Surjectivity: We need to show Range(A) = H . Since A is continuous, Range(A) is a closed

subspace of the Hilbert space H . It suffices to prove that the orthogonal complement of Range(A)
is 0. Let x be in the orthogonal complement. Then

0 = |〈Ax, x〉| = |B(x, x)| ≥ C2‖x‖2.

Thus, x = 0.



[8] Let X be a complex Banach space, I : X → X denote the identity, and S, T : X → X be
bounded linear operators. Denote by σ(A) ⊂ C the spectrum of operator A.

(a) Show that I−ST has a bounded inverse if and only if I−TS has a bounded inverse.

(b) Show that σ(ST ) \ {0} = σ(TS) \ {0}.
(c) Show that ST − TS 6= I.

Part (a): By summetry, it suffices to consider the ”if” part. Assuming that I −TS has a bounded
inverse, we shall prove that I − ST has a bounded inverse too.

We show that the bounded operator I + S(I − TS)−1T gives the inverse of I − ST :[
I + S(I − TS)−1T

]
(I − ST )

= I − ST + S(I − TS)−1T − S(I − TS)−1TST

= I − ST + S(I − TS)−1T + S(I − TS)−1
[− I + (I − TS)

]
T

= I − ST + S(I − TS)−1T − S(I − TS)−1T + S(I − TS)−1(I − TS)T

= I, (the 2nd term + the last term =0, and the 3rd term + 4th term =0)

(I − ST )
[
I + S(I − TS)−1T

]
= I − ST + S(I − TS)−1T − STS(I − TS)−1T

= I − ST + S(I − TS)−1T + S
[− I + (I − TS)

]
(I − TS)−1T

= I − ST + S(I − TS)−1T − S(I − TS)−1T + ST

= I.

Part (b): For c ∈ C \ 0, we have the following equivalence:

c ∈ σ(TS) ⇐⇒ cI − TS = c (I − c−1TS) has no bounded inverse

⇐⇒ I − c−1TS has no bounded inverse

⇐⇒ I − S(c−1T ) = I − c−1ST has no bounded inverse (by Part (a))

⇐⇒ cI − ST has no bounded inverse

⇐⇒ c ∈ σ(ST ).

Part (c): Suppose that ST − TS = I. Since ST and TS are bounded operators in a complex
Banach space X, σ(ST ) and σ(TS) are nonempty compact sets.

If 0 ∈ σ(TS), then 1 ∈ σ(ST ) since ST = I + TS. By part (b), we have 1 ∈ σ(TS). Using
ST = I +TS again, we see 2 ∈ σ(ST ). Repeating this argument, we infer that all positive integers
are in σ(ST ), contradicting the boundedness of ST .

If 0 ∈ σ(ST ), a similar argument shows that all negative integers are in σ(TS), a contradiction.
It remains to consider the case where 0 6∈ σ(TS) and 0 6∈ σ(ST ). In this case, Part (b) implies

σ(TS) = σ(ST ). Combined with the asssumption ST = I + TS, it follows that the nonempty set
σ(ST ) has a translational invariance:

σ(ST ) = 1 + σ(TS) = 1 + σ(ST ).

In particular, σ(ST ) has to be unbounded. This contradicts the boundedness of ST .


