Algebra: Suggested Questions

1. (a) If A and B are subgroups of finite index in a group G, and $[G: A]$ and $[G: B]$ are relatively prime, then $G=A B$.
Solution: Firstly, if $[G: B]$ is finite then, for any subgroup A of $G,[A: A \cap B]$ is finite and $\leq[G: B]$ and moreover equality holds if and only if $G=A B$. To see this let $g_{1} B, \ldots, g_{n} B$ be the left cosets of B such that $g_{i} B \cap A \neq$ and let $a_{i} \in g_{i} B, a_{i} \in A$ for each i. Then, the $a_{i}(A \cap B)$ are the cosets of $A \cap B$ in A. Also, if $g_{1} B, \ldots, g_{n} B$ are all the cosets of B, then $[G: B]=[A: A \cap B]$ and clearly every element of $G \in A B$.
Now, since $A \cap B$ is a subgroup of both A and B, we have that $[G$: $A \cap B]=[G: A][A: A \cap B]$, and $[G: A \cap B]=[G: B][B: A \cap B]$. Since $[G: A]$ and $[G: B]$ are mutually prime, this shows that $[G: A \cap B] \geq[G: A][G: B]$. But, from the previous paragraph we have that $[G: A \cap B]=[G: A][A: A \cap B] \leq[G: A][G: B]$ with equality if and only if $G=A B$. Since, the equality holds, $G=A B$.
(b) If H is a proper subgroup of a finite group G, then the set union $\cup_{x \in G} x^{-1} H x$ is not the whole of G.
Solution: The number of conjugates of H equals the index of its normalizer that is $\left[G: N_{H}\right] \leq[G: H]$ since $H \subset N_{H}$. Let $|G|=n$ and $[G: H]=m$. Since all conjugates have at least the identity in common, $\left|\cup_{x \in G} x^{-1} H x\right| \leq 1+m(n / m-1)=n-(m-1)<n$, since H is proper and hence $m=[G: H]>1$.
2. (a) List the Sylow subgroups of non-abelian groups of orders 21 and 39.

Solution: A non-abelian group of order 21 has seven Sylow 3groups and one Sylow 7 -group. A non-abelian group of order 39 must have thirteen Sylow 3-groups and one Sylow 13-group.
(b) Prove that there is no simple group of order 56.

Solution: Let G be a group of order 56. Consider the Sylow 7groups. If G is simple then it must have eight Sylow 7 -groups. Any two of these can intersect only at the indentity. Hence their union must have cardinality $1+8(7-1)=49$. Hence, there must be a unique Sylow 2-group which would imply that G is not simple.
3. Let A be a commutative ring with identity which is not a field. Prove that the following conditions are equivalent.
(a) The sum of two non-invertible elements is non-invertible.
(b) The non-invertible elements form a proper ideal.
(c) The ring A possesses a unique maximal ideal.

Give an example of a ring satisfying the above conditions and describe its unique maximal ideal.
Solution:
(a) $\Rightarrow(\mathrm{b})$: Let $a \in A$ be non-invertible. Then $-a$ is also non-invertible and 0 is non-invertible. Hence, the non-invertible elements form an additive subgroup of I of A. Morever, if $a \in I$ and $b \in A$, then $b a \in I$. Otherwise, let $c \in A$ such that $b a c=1$ which would imply that a is invertible. Since, $1 \notin I$ this shows that I is a proper ideal.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: Let I be the ideal of the non-invertible elements and let M be a maximal ideal in A. Then clearly every element of M must be non-invertible, otherwise $1 \in M$. Hence, $M \subset I$. But since, I is proper, $M=I$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$: Let M be the unique maximal ideal of A. Let x, y be two non-invertible elements of A. Then, $(x) \subset M,(y) \subset M$ since, $(x),(y)$ are proper ideals, and M is the unique maximal ideal. Then, $(x+y) \subset M$. Now, since $1 \notin M$, this implies that $x+y$ is also non-invertible.

Example: The ring $k[[x]]$ with the unique maximal ideal (x).
4. (a) Let α be the real positive fourth root of 2 and $i=\sqrt{-1}$. Find all intermediate fields in the extension $\mathbb{Q}(\alpha, i)$ over \mathbb{Q}.
Solution: Handwritten in a separate page.
(b) Let K be a finite field with p^{n} elements. Show that every element of K has a unique p-th root in K.
Solution: Consider the Frobenius automorphism of $\sigma: K \rightarrow K$, sending $x \mapsto x^{p}$. Since, this is an automorphism of K, it is clear that for each $x \in K$, there exists a unique y such that $\sigma(y)=x$.
5. Recall that a square matrix is nilpotent if $A^{p}=0$ for some $p>0$.
(a) If A is an $n \times n$ complex nilpotent matrix, then $A^{n}=0$.

Solution: Let $p>0$ be the largest integer such that $A^{p} \neq 0$. Then, $A^{p} x \neq 0$ for some $x \in \mathbb{C}^{n}$. Then, the vectors $x, A x, \ldots, A^{p} x$ are linearly independent. Otherwise, let $\sum_{0 \leq i \leq p} c_{i} A^{i} x=0$ and not all $c_{i}=0$. Let $1 \leq k<p$ be the least index such that $c_{k} \neq 0$. Then, $A^{k} x=\sum_{k<i \leq p} \frac{c_{i}}{c_{k}} A^{i} x$. Multiplying, by A^{p-k} we get, $A^{p} x=\sum_{k<i \leq p} \frac{c_{i}}{c_{k}} A^{p-k+i} x=0$, because $A^{p+1}=0$, a contradiction. Hence, $p<n$.
(b) Prove that the characteristic polynomial of a nilpotent matrix A of order n is equal to λ^{n}.

Solution: The polynomial λ^{n} annihilates A and hence the minimal polynomial of A is $\lambda^{m}, 0 \leq m \leq n$. Thus, the characteristic polynomial is λ^{n}.
(c) Let A be a matrix of order n. Prove that A is nilpotent if and only if $\operatorname{tr}\left(A^{p}\right)=0$ for $p=1, \ldots, n$.
One direction follows from the previous problem. In the other direction, first reduce the matrix A to its Jordan normal form and let $\lambda_{1}, \ldots, \lambda_{k}$ be its distinct non-zero eigenvalues. Let n_{i} be the sum of the orders of the Jordan blocks corresponding to the eigenvalue λ_{i}. Then, $\operatorname{tr}\left(A^{p}\right)=\sum_{1 \leq i \leq k} n_{i} \lambda_{i}^{p}=0,1 \leq p \leq k$. Looking at these equations as a system equations in the unknowns n_{i}, we see that the determinant $\operatorname{det}\left(\left(\lambda_{i}^{p}\right)_{i, p}\right) \neq 0$ (Vandermonde). Thus, the only solution is $n_{1}=\cdots=n_{k}=0$. Thus, all eigenvalues are zero and the characteristic polynomial of A is λ^{n}. Thus, $A^{n}=$ 0 and A is nilpotent.

