Algebra: Suggested Questions

1. (a) If A and B are subgroups of finite index in a group G, and [G : A]and [G : B] are relatively prime, then G = AB. Solution: Firstly, if [G : B] is finite then, for any subgroup A of $G, [A : A \cap B]$ is finite and $\leq [G : B]$ and moreover equality holds if and only if G = AB. To see this let g_1B, \ldots, g_nB be the left cosets of B such that $g_iB \cap A \neq$ and let $a_i \in g_iB, a_i \in A$ for each *i*. Then, the $a_i(A \cap B)$ are the cosets of $A \cap B$ in A. Also, if g_1B, \ldots, g_nB are all the cosets of B, then $[G : B] = [A : A \cap B]$ and clearly every element of $G \in AB$.

> Now, since $A \cap B$ is a subgroup of both A and B, we have that $[G : A \cap B] = [G : A][A : A \cap B]$, and $[G : A \cap B] = [G : B][B : A \cap B]$. Since [G : A] and [G : B] are mutually prime, this shows that $[G : A \cap B] \ge [G : A][G : B]$. But, from the previous paragraph we have that $[G : A \cap B] = [G : A][A : A \cap B] \le [G : A][G : B]$ with equality if and only if G = AB. Since, the equality holds, G = AB.

- (b) If *H* is a proper subgroup of a finite group *G*, then the set union $\bigcup_{x \in G} x^{-1}Hx$ is not the whole of *G*. Solution: The number of conjugates of *H* equals the index of its normalizer that is $[G:N_H] \leq [G:H]$ since $H \subset N_H$. Let |G| = n and [G:H] = m. Since all conjugates have at least the identity in common, $|\bigcup_{x \in G} x^{-1}Hx| \leq 1 + m(n/m - 1) = n - (m - 1) < n$, since *H* is proper and hence m = [G:H] > 1.
- (a) List the Sylow subgroups of non-abelian groups of orders 21 and 39.

Solution: A non-abelian group of order 21 has seven Sylow 3groups and one Sylow 7-group. A non-abelian group of order 39 must have thirteen Sylow 3-groups and one Sylow 13-group.

(b) Prove that there is no simple group of order 56.

Solution: Let G be a group of order 56. Consider the Sylow 7groups. If G is simple then it must have eight Sylow 7-groups. Any two of these can intersect only at the indentity. Hence their union must have cardinality 1 + 8(7 - 1) = 49. Hence, there must be a unique Sylow 2-group which would imply that G is not simple.

- 3. Let A be a commutative ring with identity which is not a field. Prove that the following conditions are equivalent.
 - (a) The sum of two non-invertible elements is non-invertible.
 - (b) The non-invertible elements form a proper ideal.

(c) The ring A possesses a unique maximal ideal.

Give an example of a ring satisfying the above conditions and describe its unique maximal ideal.

Solution:

(a) \Rightarrow (b): Let $a \in A$ be non-invertible. Then -a is also non-invertible and 0 is non-invertible. Hence, the non-invertible elements form an additive subgroup of I of A. Morever, if $a \in I$ and $b \in A$, then $ba \in I$. Otherwise, let $c \in A$ such that bac = 1 which would imply that a is invertible. Since, $1 \notin I$ this shows that I is a proper ideal.

(b) \Rightarrow (c): Let *I* be the ideal of the non-invertible elements and let *M* be a maximal ideal in *A*. Then clearly every element of *M* must be non-invertible, otherwise $1 \in M$. Hence, $M \subset I$. But since, *I* is proper, M = I.

(c) \Rightarrow (a): Let M be the unique maximal ideal of A. Let x, y be two non-invertible elements of A. Then, $(x) \subset M, (y) \subset M$ since, (x), (y) are proper ideals, and M is the unique maximal ideal. Then, $(x + y) \subset M$. Now, since $1 \notin M$, this implies that x + y is also non-invertible.

Example: The ring k[[x]] with the unique maximal ideal (x).

- 4. (a) Let α be the real positive fourth root of 2 and i = √-1. Find all intermediate fields in the extension Q(α, i) over Q. Solution: Handwritten in a separate page.
 - (b) Let K be a finite field with p^n elements. Show that every element of K has a unique p-th root in K. Solution: Consider the Frobenius automorphism of $\sigma : K \to K$, sending $x \mapsto x^p$. Since, this is an automorphism of K, it is clear that for each $x \in K$, there exists a unique y such that $\sigma(y) = x$.
- 5. Recall that a square matrix is nilpotent if $A^p = 0$ for some p > 0.
 - (a) If A is an $n \times n$ complex nilpotent matrix, then $A^n = 0$. Solution: Let p > 0 be the largest integer such that $A^p \neq 0$. Then, $A^p x \neq 0$ for some $x \in \mathbb{C}^n$. Then, the vectors $x, Ax, \ldots, A^p x$ are linearly independent. Otherwise, let $\sum_{0 \le i \le p} c_i A^i x = 0$ and not all $c_i = 0$. Let $1 \le k < p$ be the least index such that $c_k \neq 0$. Then, $A^k x = \sum_{k < i \le p} \frac{c_i}{c_k} A^i x$. Multiplying, by A^{p-k} we get, $A^p x = \sum_{k < i \le p} \frac{c_i}{c_k} A^{p-k+i} x = 0$, because $A^{p+1} = 0$, a contradiction. Hence, p < n.
 - (b) Prove that the characteristic polynomial of a nilpotent matrix A of order n is equal to λ^n .

Solution: The polynomial λ^n annihilates A and hence the minimal polynomial of A is $\lambda^m, 0 \leq m \leq n$. Thus, the characteristic polynomial is λ^n .

(c) Let A be a matrix of order n. Prove that A is nilpotent if and only if $tr(A^p) = 0$ for p = 1, ..., n.

One direction follows from the previous problem. In the other direction, first reduce the matrix A to its Jordan normal form and let $\lambda_1, \ldots, \lambda_k$ be its distinct non-zero eigenvalues. Let n_i be the sum of the orders of the Jordan blocks corresponding to the eigenvalue λ_i . Then, $tr(A^p) = \sum_{1 \le i \le k} n_i \lambda_i^p = 0, 1 \le p \le k$. Looking at these equations as a system equations in the unknowns n_i , we see that the determinant $det((\lambda_i^p)_{i,p}) \ne 0$ (Vandermonde). Thus, the only solution is $n_1 = \cdots = n_k = 0$. Thus, all eigenvalues are zero and the characteristic polynomial of A is λ^n . Thus, $A^n = 0$ and A is nilpotent.