Algebra Comprehensive Exam Fall 2004

Instructions: Attempt any five questions, and please provide careful and complete answers. If you attempt more questions, specify which five should be graded.

1. (a) Prove that a group of order $1225=7^{2} \cdot 5^{2}$ is abelian.
(b) List the groups of order 1225 up to isomorphism.
2. Let G be a group with identity element e, with the property that for any two elements $x, y \in G \backslash\{e\}$, there exists an automorphism σ of G with $\sigma(x)=y$.
(a) Prove that all elements of $G \backslash\{e\}$ have the same order.
(b) If G is finite, prove that it is abelian.
3. Let $G L_{n}(\mathbb{C})$ be the multiplicative group of $n \times n$ matrices of complex numbers. Prove that every element of $G L_{n}(\mathbb{C})$ of finite order is diagonalizable.
4. Determine all maximal ideals of the ring

$$
\mathbb{Z}[x] /\left(120, x^{3}+1\right) .
$$

5. For which integers $n \geq 1$ does the polynomial

$$
f(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!} \in \mathbb{Q}[x]
$$

have multiple roots?
6. For an integer $n \geq 3$, consider a regular n-sided polygon inscribed in a circle of radius 1 . Let P_{1}, \ldots, P_{n} be its vertices, and λ_{k} be the length of the line joining P_{n} and P_{k} for $1 \leq k \leq n-1$. Prove that

$$
\lambda_{1} \cdots \lambda_{n-1}=n
$$

7. Let A be a real $n \times n$ matrix and let

$$
M=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\},
$$

where $|\lambda|$ denotes the absolute value of the complex number λ.
(a) If A is symmetric, prove that $\|A x\| \leq M\|x\|$ for all $x \in \mathbb{R}^{n}$, where $\|\|$ denotes the Euclidean norm on \mathbb{R}^{n}.
(b) Is this true if A is not symmetric? Prove or disprove.

