Algebra Comprehensive Exam Fall 2004

Instructions: Attempt any five questions, and please provide careful and complete answers. If you attempt more questions, specify which five should be graded.

- 1. (a) Prove that a group of order $1225 = 7^2 \cdot 5^2$ is abelian.
 - (b) List the groups of order 1225 up to isomorphism.
- 2. Let G be a group with identity element e, with the property that for any two elements $x, y \in G \setminus \{e\}$, there exists an automorphism σ of G with $\sigma(x) = y$.
 - (a) Prove that all elements of $G \setminus \{e\}$ have the same order.
 - (b) If G is finite, prove that it is abelian.
- 3. Let $GL_n(\mathbb{C})$ be the multiplicative group of $n \times n$ matrices of complex numbers. Prove that every element of $GL_n(\mathbb{C})$ of finite order is diagonalizable.
- 4. Determine all maximal ideals of the ring

$$\mathbb{Z}[x]/(120, x^3+1).$$

5. For which integers $n \ge 1$ does the polynomial

$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \in \mathbb{Q}[x]$$

have multiple roots?

6. For an integer $n \ge 3$, consider a regular *n*-sided polygon inscribed in a circle of radius 1. Let P_1, \ldots, P_n be its vertices, and λ_k be the length of the line joining P_n and P_k for $1 \le k \le n-1$. Prove that

$$\lambda_1 \cdots \lambda_{n-1} = n.$$

7. Let A be a real $n \times n$ matrix and let

 $M = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\},\$

where $|\lambda|$ denotes the absolute value of the complex number λ .

(a) If A is symmetric, prove that $||Ax|| \leq M ||x||$ for all $x \in \mathbb{R}^n$, where || || denotes the Euclidean norm on \mathbb{R}^n .

(b) Is this true if A is not symmetric? Prove or disprove.