Algebra Comprehensive Exam Solutions Fall 2004

Instructions: Attempt any five questions, and please provide careful and complete answers. If you attempt more questions, specify which five should be graded.

1. (a) Prove that a group of order $1225=7^{2} \cdot 5^{2}$ is abelian.
(b) List the groups of order 1225 up to isomorphism.

Solution: (a) In general, the number of p-Sylow subgroups of a finite group G is $1 \bmod p$ and divides $|G|$. Let $|G|=1225$. The number of 5 -Sylow subgroups of G is $1 \bmod 5$ and divides 49 , hence there is a unique 5 -Sylow subgroup P which, therefore, is a normal subgroup. Similarly there is a unique, hence normal, 7-Sylow subgroup Q.
For primes p, groups of order p^{2} are abelian, so P and Q above are abelian. Let $x \in P$ and $y \in Q$. Since P and Q are normal, $x y x^{-1} y^{-1} \in P \cap Q=\{e\}$, so $x y=y x$ and it follows that all elements of $G=P Q$ commute.
(b) The groups of order 1225 are

$$
\frac{\mathbb{Z}}{\left\langle 5^{2} \cdot 7^{2}\right\rangle}, \quad \frac{\mathbb{Z}}{\langle 5\rangle} \times \frac{\mathbb{Z}}{\left\langle 5 \cdot 7^{2}\right\rangle}, \quad \frac{\mathbb{Z}}{\langle 7\rangle} \times \frac{\mathbb{Z}}{\left\langle 5^{2} \cdot 7\right\rangle}, \quad \frac{\mathbb{Z}}{\langle 5 \cdot 7\rangle} \times \frac{\mathbb{Z}}{\langle 5 \cdot 7\rangle}
$$

2. Let G be a group with identity element e, with the property that for any two elements $x, y \in G \backslash\{e\}$, there exists an automorphism σ of G with $\sigma(x)=y$.
(a) Prove that all elements of $G \backslash\{e\}$ have the same order.
(b) If G is finite, prove that it is abelian.

Solution: (a) This follows since $|x|=|\sigma(x)|$ for any element $x \in G$ and any automorphism σ.
(b) Let p be a prime dividing $|G|$. There exists $x \in G$ with $|x|=p$, so all elements of $G \backslash\{e\}$ have order p and therefore G is a p-group (i.e., $|G|=p^{n}$). A p-group has a nontrivial center $Z(G) \neq\{e\}$. But if $y \in Z(G)$ then $\sigma(y) \in Z(G)$ for any automorphism σ, hence $Z(G)=G$.
3. Let $G L_{n}(\mathbb{C})$ be the multiplicative group of $n \times n$ matrices of complex numbers. Prove that every element of $G L_{n}(\mathbb{C})$ of finite order is diagonalizable.
Solution: If $A^{k}=I$ for $A \in G L_{n}(\mathbb{C})$, then the minimal polynomial $p(x)$ of A divides $x^{k}-1 \in \mathbb{C}[x]$. But $x^{k}-1$ has distinct roots in \mathbb{C}, hence so does $p(x)$, and therefore A is diagonalizable.
4. Determine all maximal ideals of the ring

$$
\mathbb{Z}[x] /\left(120, x^{3}+1\right) .
$$

Solution: Maximal ideals of $R=\mathbb{Z}[x] /\left(120, x^{3}+1\right)$ correspond to maximal ideals of $\mathbb{Z}[x]$ containing $\left(120, x^{3}+1\right)$. Since $120=2^{3} \cdot 3 \cdot 5$, every maximal ideal of R must contain either 2 or 3 or 5 . Now determine the irreducible factors of $x^{3}+1$ over each of $\mathbb{Z} /(2), \mathbb{Z} /(3), \mathbb{Z} /(5)$. The maximal ideals of R are

$$
(2, x+1) R, \quad\left(2, x^{2}+x+1\right) R, \quad(3, x+1) R, \quad(5, x+1) R, \quad\left(5, x^{2}-x+1\right) R
$$

5. For which integers $n \geq 1$ does the polynomial

$$
f(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!} \in \mathbb{Q}[x]
$$

have multiple roots?
Solution: The derivative of $f(x)$ is

$$
f^{\prime}(x)=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n-1}}{(n-1)!},
$$

so $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=\operatorname{gcd}\left(f(x), x^{n}\right)=1$. Hence $f(x)$ and $f^{\prime}(x)$ are relatively prime for all $n \geq 1$, and so $f(x)$ always has distinct roots.
6. For an integer $n \geq 3$, consider a regular n-sided polygon inscribed in a circle of radius 1. Let P_{1}, \ldots, P_{n} be its vertices, and λ_{k} be the length of the line joining P_{n} and P_{k} for $1 \leq k \leq n-1$. Prove that

$$
\lambda_{1} \cdots \lambda_{n-1}=n
$$

Solution: There is no loss of generality in taking the unit circle in the complex plane and $P_{n}=1$. It follows that $\lambda_{k}=\left|1-e^{2 \pi i k / n}\right|$. The elements $e^{2 \pi i k / n}$ for $k=1, \ldots, n-1$ are the distinct n-th roots of unity other than 1 , hence are precisely the roots of the polynomial

$$
\frac{x^{n}-1}{x-1}=1+x+x^{2}+\cdots+x^{n-1}
$$

This means that

$$
\prod_{k=1}^{n-1}\left(x-e^{2 \pi i k / n}\right)=1+x+x^{2}+\cdots+x^{n-1}
$$

Evaluating this polynomial at $x=1$, we get

$$
\lambda_{1} \cdots \lambda_{n-1}=\left|\prod_{k=1}^{n-1}\left(1-e^{2 \pi i k / n}\right)\right|=\left|1+1^{1}+1^{2}+\cdots+1^{n-1}\right|=n .
$$

7. Let A be a real $n \times n$ matrix and let

$$
M=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\},
$$

where $|\lambda|$ denotes the absolute value of the complex number λ.
(a) If A is symmetric, prove that $\|A x\| \leq M\|x\|$ for all $x \in \mathbb{R}^{n}$, where $\|\|$ denotes the Euclidean norm on \mathbb{R}^{n}.
(b) Is this true if A is not symmetric? Prove or disprove.

Solution: (a) Since A is a real symmetric matrix it has real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and corresponding eigenvectors v_{1}, \ldots, v_{n} which form an orthonormal basis for \mathbb{R}^{n}. Given $x \in \mathbb{R}^{n}$, let $x=\sum a_{i} v_{i}$. Then

$$
\|A x\|^{2}=\left\|\sum a_{i} \lambda_{i} v_{i}\right\|^{2}=\sum\left|a_{i} \lambda_{i}\right|^{2} \leq M^{2} \sum\left|a_{i}\right|^{2}=M^{2}\|x\|^{2} .
$$

(b) False, e.g. take

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad x=\binom{0}{1} .
$$

