Algebra Comprehensive Exam Solutions Fall 2004

Instructions: Attempt any five questions, and please provide careful and complete answers. If you attempt more questions, specify which five should be graded.

- 1. (a) Prove that a group of order $1225 = 7^2 \cdot 5^2$ is abelian.
 - (b) List the groups of order 1225 up to isomorphism.

Solution: (a) In general, the number of *p*-Sylow subgroups of a finite group *G* is 1 mod *p* and divides |G|. Let |G| = 1225. The number of 5-Sylow subgroups of *G* is 1 mod 5 and divides 49, hence there is a unique 5-Sylow subgroup *P* which, therefore, is a normal subgroup. Similarly there is a unique, hence normal, 7-Sylow subgroup *Q*.

For primes p, groups of order p^2 are abelian, so P and Q above are abelian. Let $x \in P$ and $y \in Q$. Since P and Q are normal, $xyx^{-1}y^{-1} \in P \cap Q = \{e\}$, so xy = yx and it follows that all elements of G = PQ commute.

(b) The groups of order 1225 are

$$\frac{\mathbb{Z}}{\langle 5^2 \cdot 7^2 \rangle}, \qquad \frac{\mathbb{Z}}{\langle 5 \rangle} \times \frac{\mathbb{Z}}{\langle 5 \cdot 7^2 \rangle}, \qquad \frac{\mathbb{Z}}{\langle 7 \rangle} \times \frac{\mathbb{Z}}{\langle 5^2 \cdot 7 \rangle}, \qquad \frac{\mathbb{Z}}{\langle 5 \cdot 7 \rangle} \times \frac{\mathbb{Z}}{\langle 5 \cdot 7 \rangle}$$

- 2. Let G be a group with identity element e, with the property that for any two elements $x, y \in G \setminus \{e\}$, there exists an automorphism σ of G with $\sigma(x) = y$.
 - (a) Prove that all elements of $G \setminus \{e\}$ have the same order.
 - (b) If G is finite, prove that it is abelian.

Solution: (a) This follows since $|x| = |\sigma(x)|$ for any element $x \in G$ and any automorphism σ .

(b) Let p be a prime dividing |G|. There exists $x \in G$ with |x| = p, so all elements of $G \setminus \{e\}$ have order p and therefore G is a p-group (i.e., $|G| = p^n$). A p-group has a nontrivial center $Z(G) \neq \{e\}$. But if $y \in Z(G)$ then $\sigma(y) \in Z(G)$ for any automorphism σ , hence Z(G) = G.

3. Let $GL_n(\mathbb{C})$ be the multiplicative group of $n \times n$ matrices of complex numbers. Prove that every element of $GL_n(\mathbb{C})$ of finite order is diagonalizable.

Solution: If $A^k = I$ for $A \in GL_n(\mathbb{C})$, then the minimal polynomial p(x) of A divides $x^k - 1 \in \mathbb{C}[x]$. But $x^k - 1$ has distinct roots in \mathbb{C} , hence so does p(x), and therefore A is diagonalizable.

4. Determine all maximal ideals of the ring

$$\mathbb{Z}[x]/(120, x^3+1).$$

Solution: Maximal ideals of $R = \mathbb{Z}[x]/(120, x^3 + 1)$ correspond to maximal ideals of $\mathbb{Z}[x]$ containing $(120, x^3 + 1)$. Since $120 = 2^3 \cdot 3 \cdot 5$, every maximal ideal of R must contain either 2 or 3 or 5. Now determine the irreducible factors of $x^3 + 1$ over each of $\mathbb{Z}/(2)$, $\mathbb{Z}/(3)$, $\mathbb{Z}/(5)$. The maximal ideals of R are

$$(2, x+1)R, \quad (2, x^2+x+1)R, \quad (3, x+1)R, \quad (5, x+1)R, \quad (5, x^2-x+1)R$$

5. For which integers $n \ge 1$ does the polynomial

$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \in \mathbb{Q}[x]$$

have multiple roots?

Solution: The derivative of f(x) is

$$f'(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}$$

so $gcd(f(x), f'(x)) = gcd(f(x), x^n) = 1$. Hence f(x) and f'(x) are relatively prime for all $n \ge 1$, and so f(x) always has distinct roots.

6. For an integer $n \ge 3$, consider a regular *n*-sided polygon inscribed in a circle of radius 1. Let P_1, \ldots, P_n be its vertices, and λ_k be the length of the line joining P_n and P_k for $1 \le k \le n-1$. Prove that

$$\lambda_1 \cdots \lambda_{n-1} = n.$$

Solution: There is no loss of generality in taking the unit circle in the complex plane and $P_n = 1$. It follows that $\lambda_k = |1 - e^{2\pi i k/n}|$. The elements $e^{2\pi i k/n}$ for $k = 1, \ldots, n-1$ are the distinct *n*-th roots of unity other than 1, hence are precisely the roots of the polynomial

$$\frac{x^n - 1}{x - 1} = 1 + x + x^2 + \dots + x^{n-1}.$$

This means that

$$\prod_{k=1}^{n-1} \left(x - e^{2\pi i k/n} \right) = 1 + x + x^2 + \dots + x^{n-1}.$$

Evaluating this polynomial at x = 1, we get

$$\lambda_1 \cdots \lambda_{n-1} = \left| \prod_{k=1}^{n-1} \left(1 - e^{2\pi i k/n} \right) \right| = \left| 1 + 1^1 + 1^2 + \dots + 1^{n-1} \right| = n$$

7. Let A be a real $n \times n$ matrix and let

 $M = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\},\$

where $|\lambda|$ denotes the absolute value of the complex number λ .

(a) If A is symmetric, prove that $||Ax|| \le M ||x||$ for all $x \in \mathbb{R}^n$, where || || denotes the Euclidean norm on \mathbb{R}^n .

(b) Is this true if A is not symmetric? Prove or disprove.

Solution: (a) Since A is a real symmetric matrix it has real eigenvalues $\lambda_1, \ldots, \lambda_n$, and corresponding eigenvectors v_1, \ldots, v_n which form an orthonormal basis for \mathbb{R}^n . Given $x \in \mathbb{R}^n$, let $x = \sum a_i v_i$. Then

$$||Ax||^{2} = ||\sum a_{i}\lambda_{i}v_{i}||^{2} = \sum |a_{i}\lambda_{i}|^{2} \le M^{2}\sum |a_{i}|^{2} = M^{2}||x||^{2}.$$

(b) False, e.g. take

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \text{and} \qquad x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$