Comprehensive Exam, Fall 2004 (Analysis)

Problem 1: Prove or give a counterexample to the following statement: Every function $f: [0, +\infty) \to \mathbb{R}$ for which the improper Riemann integral

$$\int_0^\infty f(x)dx$$

is convergent is Lebesgue integrable on $[0, +\infty)$.

<u>Problem</u> 2: Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Let $f_n : \Omega \to \mathbb{R}, n \ge 1$, and $g : \Omega \to \mathbb{R}$ be functions in $L^1(\mu)$ such that there exists a constant C > 0 such that

$$\int_{\Omega} |f_n| \ d\mu \le C$$

for all $n \geq 1$. Suppose moreover that

$$\frac{1}{n}f_n^2 \le g \quad \text{on } \Omega.$$

Show that

$$\int_{\Omega} \frac{1}{n} f_n^2 \ d\mu \to 0 \quad \text{as } n \to \infty.$$

Problem 3: Define

$$B = C([0,1]) = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}, \quad \|f\|_B = \max_{0 \le x \le 1} |f(x)|$$
$$C = C^{\alpha}([0,1]) = \{f : [0,1] \to \mathbb{R} : f \in B \text{ and } \|f\|_C = \|f\|_B + \sup_{x \ne y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty\}$$

for some $\alpha \in (0, 1]$. It is well known that equipped with the norms $\|\cdot\|_B$, and $\|\cdot\|_C$, the spaces B, and C respectively are Banach spaces (normed vector spaces complete with respect to the norm metric). Determine if the unit ball is compact in the spaces B and C. Is the unit ball of C compact as a subset of B?

<u>Problem</u> 4: Let $f : [a, b] \times \mathbb{R}^n \to \mathbb{R}$ be a function such that

(i) for each $t \in [a, b]$, the function $x \to f(t, x)$ is continuous,

(ii) for each $x \in \mathbb{R}^n$, the function $t \to f(t, x)$ is Lebesgue measurable.

Show that f is $\mathcal{L} \otimes \mathcal{B}$ measurable, where \mathcal{L} is the class of Lebesgue measurable sets on [a, b], \mathcal{B} is the Borel σ -algebra on \mathbb{R}^n , and $\mathcal{L} \otimes \mathcal{B}$ is the product σ -algebra of \mathcal{L} and \mathcal{B} .

Problem 5: Fix a prime number p. A rational number x can be represented by $x = p^{\alpha} \frac{k}{l}$ with k, l not divisible by p, and $\alpha \in \mathbb{Z}$ is defined uniquely. Define $|\cdot|_p : \mathbb{Q} \to \mathbb{R}$ by

$$|x|_p := p^{-\alpha}$$
, and $|0|_p := 0$.

- (a) Show that $|x+y|_p \le \max\{|x|_p, |y|_p\}$ and conclude that $d(x, y) := |x-y|_p$ defines a metric on \mathbb{Q} .
- (b) Show that in the completion of \mathbb{Q} w.r.t. the above metric a series of rational numbers

$$\sum_{n\geq 0} a_n$$

converges if and only if $|a_n|_p \to 0$.

Problem 6: Let (X, d) be a compact metric space and denote by $B_R(a) \subset X$ the closed ball of radius R > 0 centered at $a \in X$. Suppose μ is a positive Borel measure on X satisfying for some $\beta > 0$ and for all $r \in (0, 1)$ and $a \in X$

$$c_1 r^{\beta} \leq \mu(B_r(a)) \leq r^{\beta},$$

with $c_1 > 0$ independent of r and a. Fix a point $a \in X$. Find all $\alpha \in \mathbb{R}$ for which $x \mapsto d(x, a)^{\alpha}$ is in $L^1(X, d\mu)$.

Problem 7: Let *H* be a Hilbert space. Show that if $T : H \to H$ is symmetric, i.e. $\langle x, Ty \rangle = \langle Tx, y \rangle$ for all $x, y \in H$, then *T* is linear and continuous.