Comprehensive Exam, Fall 2004 (Analysis)

Problem 1: Prove or give a counterexample to the following statement: Every function $f:[0,+\infty) \rightarrow \mathbb{R}$ for which the improper Riemann integral

$$
\int_{0}^{\infty} f(x) d x
$$

is convergent is Lebesgue integrable on $[0,+\infty)$.
Problem 2: Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Let $f_{n}: \Omega \rightarrow \mathbb{R}, n \geq 1$, and $g: \Omega \rightarrow \mathbb{R}$ be functions in $L^{1}(\mu)$ such that there exists a constant $C>0$ such that

$$
\int_{\Omega}\left|f_{n}\right| d \mu \leq C
$$

for all $n \geq 1$. Suppose moreover that

$$
\frac{1}{n} f_{n}^{2} \leq g \quad \text { on } \Omega
$$

Show that

$$
\int_{\Omega} \frac{1}{n} f_{n}^{2} d \mu \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Problem 3: Define

$$
\begin{gathered}
B=C([0,1])=\{f:[0,1] \rightarrow \mathbb{R}: \mathrm{f} \text { is continuous }\}, \quad\|f\|_{B}=\max _{0 \leq x \leq 1}|f(x)| \\
C=C^{\alpha}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{R}: f \in B \text { and }\|f\|_{C}=\|f\|_{B}+\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<+\infty\right\},
\end{gathered}
$$

for some $\alpha \in(0,1]$. It is well known that equipped with the norms $\|\cdot\|_{B}$, and $\|\cdot\|_{C}$, the spaces B, and C respectively are Banach spaces (normed vector spaces complete with respect to the norm metric). Determine if the unit ball is compact in the spaces B and C. Is the unit ball of C compact as a subset of B ?

Problem 4: Let $f:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that (i) for each $t \in[a, b]$, the function $x \rightarrow f(t, x)$ is continuous,
(ii) for each $x \in \mathbb{R}^{n}$, the function $t \rightarrow f(t, x)$ is Lebesgue measurable.

Show that f is $\mathcal{L} \otimes \mathcal{B}$ measurable, where \mathcal{L} is the class of Lebesgue measurable sets on $[a, b], \mathcal{B}$ is the Borel σ-algebra on \mathbb{R}^{n}, and $\mathcal{L} \otimes \mathcal{B}$ is the product σ-algebra of \mathcal{L} and \mathcal{B}.

Problem 5: Fix a prime number p. A rational number x can be represented by $x=p^{\alpha} \frac{k}{l}$ with k, l not divisible by p, and $\alpha \in \mathbb{Z}$ is defined uniquely. Define $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{R}$ by

$$
|x|_{p}:=p^{-\alpha}, \quad \text { and } \quad|0|_{p}:=0
$$

(a) Show that $|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$ and conclude that $d(x, y):=|x-y|_{p}$ defines a metric on \mathbb{Q}.
(b) Show that in the completion of \mathbb{Q} w.r.t. the above metric a series of rational numbers

$$
\sum_{n \geq 0} a_{n}
$$

converges if and only if $\left|a_{n}\right|_{p} \rightarrow 0$.

Problem 6: Let (X, d) be a compact metric space and denote by $B_{R}(a) \subset X$ the closed ball of radius $R>0$ centered at $a \in X$. Suppose μ is a positive Borel measure on X satisfying for some $\beta>0$ and for all $r \in(0,1)$ and $a \in X$

$$
c_{1} r^{\beta} \leq \mu\left(B_{r}(a)\right) \leq r^{\beta}
$$

with $c_{1}>0$ independent of r and a. Fix a point $a \in X$. Find all $\alpha \in \mathbb{R}$ for which $x \mapsto d(x, a)^{\alpha}$ is in $L^{1}(X, d \mu)$.

Problem 7: Let H be a Hilbert space. Show that if $T: H \rightarrow H$ is symmetric, i.e. $\langle x, T y\rangle=\langle T x, y\rangle$ for all $x, y \in H$, then T is linear and continuous.

