
Comprehensive Exam, Fall 2004 (Analysis)

Problem 1: Prove or give a counterexample to the following statement: Every function
f : [0, +∞) → R for which the improper Riemann integral∫ ∞

0

f(x)dx

is convergent is Lebesgue integrable on [0, +∞).

Solution:
The statement is not true. Consider a function

f(x) =
sin x

x
for x > 0

and f(0) = 1. It is easy to show that the improper Riemann integral of f is convergent.
However the Lebesgue integrals ∫

[0,∞)

f+, and

∫
[0,∞)

f−

are equal to +∞ so not only is f not integrable but the Lebesgue integral∫
[0,∞)

f

is not even well defined.

Problem 2: Let (Ω,F , µ) be a finite measure space. Let fn : Ω → R, n ≥ 1, and g : Ω → R
be functions in L1(µ) such that there exists a constant C > 0 such that∫

Ω

|fn| dµ ≤ C

for all n ≥ 1. Suppose moreover that

1

n
f 2

n ≤ g on Ω.

Show that ∫
Ω

1

n
f 2

n dµ → 0 as n →∞.

Solution: Denote

An = {x : |fn(x)| ≥ n
1
3}.



Then ∫
Ω

1

n
f 2

ndµ =

∫
An

1

n
f 2

ndµ +

∫
Ω\An

1

n
f 2

ndµ ≤
∫

An

gdµ +
1

n
n

2
3 µ(Ω).

But

µ(An) ≤ C

n
1
3

→ 0 as n →∞

and therefore, since g ∈ L1(µ), ∫
An

gdµ → 0 as n →∞

which completes the proof. (The proof of the last convergence can be found in any standard
textbook.)

Problem 3: Define

B = C([0, 1]) = {f : [0, 1] → R : f is continuous}, ‖f‖B = max
0≤x≤1

|f(x)|

C = Cα([0, 1]) = {f : [0, 1] → R : f ∈ B and ‖f‖C = ‖f‖B + sup
x 6=y

|f(x)− f(y)|
|x− y|α

< +∞},

for some α ∈ (0, 1]. It is well known that equipped with the norms ‖ · ‖B, and ‖ · ‖C , the spaces
B, and C respectively are Banach spaces (normed vector spaces complete with respect to the
norm metric). Determine if the unit ball is compact in the spaces B and C. Is the unit ball of
C compact as a subset of B?

Solution: Recall that a metric space a set X is compact if and only if every sequence in X has
a subsequence converging to an element of X.

The unit ball in B is not compact. For instance consider for n ≥ 1 a sequence of continuous
functions fn such that fn(x) = 0 if x 6∈ (1/(n + 1), 1/n), f(1/2(1/(n + 1) + 1/n)) = 1, and
0 ≤ fn(x) ≤ 1 for x ∈ (1/(n + 1), 1/n). Then ‖fn‖A = 1 but ‖fn − fm‖A = 1 if n 6= m.
Therefore the sequence does not have a convergent subsequence.

The unit ball in C is also not compact. Consider the sequence of functions

fn(x) =


x
2

for 0 ≤ x ≤ 1
2n+1 ,

1
2n+1 − x

2
for 1

2n+1 ≤ x ≤ 1
2n ,

0 otherwise.

(1)

It is easy to see that ‖fn‖C = 1
2n+2 + 1

2
but if n 6= m then ‖fn − fm‖C ≥ 1

2n+2 + 1/2 so the
sequence does not have a convergent subsequence.

However the unit ball in C is compact in B. To see this let fn be functions such that
‖fn‖C ≤ 1. Then the functions fn are equibounded and equicontinuous and so by the Arzela-
Ascoli Theorem there is a subsequence fnk

that converges uniformly on [0, 1] to a continuous
function f . Obviously

‖f‖B = lim
k→∞

‖fnk
‖B.



It remains to show that ‖f‖C ≤ 1. Let now x 6= y. Then

|f(x)− f(y)|
|x− y|α

= lim
k→∞

|fnk
(x)− fnk

(y)|
|x− y|α

≤ lim
k→∞

sup
x6=y

|fnk
(x)− fnk

(y)|
|x− y|α

≤ lim
k→∞

(1− ‖fnk
‖B) = 1− ‖f‖B.

Therefore ‖f‖C ≤ 1.

Problem 4: Let f : [a, b]× Rn → R be a function such that
(i) for each t ∈ [a, b], the function x → f(t, x) is continuous,
(ii) for each x ∈ Rn, the function t → f(t, x) is Lebesgue measurable.

Show that f is L⊗B measurable, where L is the class of Lebesgue measurable sets on [a, b], B
is the Borel σ-algebra on Rn, and L ⊗ B is the product σ-algebra of L and B.

Solution: Let r1, ..., rn, ... be a dense subset of Rn (for instance a sequence of all points with
rational coordinates). For each integer m ≥ 1 define a function fn : [a, b]× Rn → R by

fm(t, x) = f(t, rk) if |x− rk| <
1

m
but |x− ri| ≥

1

m
for 1 ≤ i < k.

Then, by (i), for every (t, x) ∈ [a, b] × Rn fm(t, x) → f(t, x) as m → ∞. Since the limit
of measurable functions is measurable it is enough to show that the functions fm are L ⊗ B
measurable. To this end choose an open set U ⊂ Rn. Then

f−1
m (U) =

∞⋃
m=1

{
(t, x) ∈ [a, b]× Rn : f(t, rk) ∈ U, |x− rk| <

1

m
, |x− ri| ≥

1

m
for 1 ≤ i < k.

}

=
∞⋃

m=1

(
{t ∈ [a, b] : f(t, rk) ∈ U} ×

{
x ∈ Rn : |x− rk| <

1

m
, |x− ri| ≥

1

m
for 1 ≤ i < k.

})

=
∞⋃

m=1

((set in L)× (set in B)) ∈ L ⊗ B.

Problem 5: Fix a prime number p. A rational number x can be represented by x = pα k
l

with k, l not divisible by p, and α ∈ Z is defined uniquely. Define | · |p : Q → R by

|x|p := p−α, and |0|p := 0.

(a) Show that |x + y|p ≤ max{|x|p, |y|p} and conclude that d(x, y) := |x− y|p defines a metric
on Q.



(b) Show that in the completion of Q w.r.t. the above metric a series of rational numbers∑
n≥0

an

converges if and only if |an|p → 0.

Solution: (a) write x = pα1k1/l1 and y = pα2k2/l2 (k1, k2, l1, l2 not divisible by p). We may
assume α1 ≥ α2. Then

|x + y|p = |pα2(pα1−α2l2k1 + l1k2)/(l1l2)|p = |pα2|p = p−α2

since p does not divide the terms in parenthesis above. Note that max{|x|p, |y|p} ≤ |x|p + |y|p.
Hence d(x, z) = |x− y + y− z|p ≤ |x− y|p + |y− z|p, proving the triangle inequality. Obviously
d is symmetric and d(x, y) = 0 iff x = y.

(b) Consider the partial sums SN =
∑N

n=1 an. Suppose SN converges. Then SN is a Cauchy
sequence, hence for ε > 0 there is Nε such that

|aN |p = |SN − SN−1|p ≤ ε

for N ≥ Nε. So |aN |p → 0 w.r.t. the metric d. Suppose now an → 0, i.e. |an|p → 0. Then for
M, N ∈ N

|SN+M − SM |p ≤ max{|aN+1|p, ....., |aN+M |p} → 0

Hence SN is a Cauchy sequences which converges in the completion of Q w.r.t. the metric d.

Problem 6: Let (X, d) be a compact metric space and denote by BR(a) ⊂ X the closed
ball of radius R > 0 centered at a ∈ X. Suppose µ is a positive Borel measure on X satisfying
for some β > 0 and for all r ∈ (0, 1) and a ∈ X

c1 rβ ≤ µ(Br(a)) ≤ rβ,

with c1 > 0 independent of r and a. Fix a point a ∈ X. Find all α ∈ R for which x 7→ d(x, a)α

is in L1(X, dµ).

Solution: Only the case α < 0 is interesting. Since d(x, a)α is bounded and continuous away
from a it suffices to check whether∫

B1(a)

d(x, a)α dµ(x) < ∞.

Let {Rk} be a strictly monotone decreasing sequence of positive reals and denote by Bk the
balls BRk

(a). We will choose Rk such that Bk \ Bk+1 has essentially the same measure as Bk.
To achieve this we compute

µ(Bk \Bk+1) = µ(Bk)− µ(Bk+1) ≥ c1R
β
k −Rβ

k+1



Hence, if we choose Rk+1 = Rkγ, 0 < γ < 1, the last term is Rβ
k(c1 − γβ) which by appropriate

choice of γ equals Rβ
kc1/2. We set Rk = γk, k = 0, 1, .... and write∫

B1(a)

d(x, a)α dµ(x) =
∑
k≥0

∫
Bk\Bk+1

d(x, a)α dµ(x)

On each ”shell” Bk \Bk+1 we may bound the integrand above by Rα
k+1 and from below by Rα

k .

Since the shells have µ-measure at most Rβ
k we find that∫

B1(a)

d(x, a)α dµ(x) ≤
∑

k

γ(k+1)α γkβ.

The latter geometric series converges if α > −β. Since we also have∫
Bk\Bk+1

d(x, a)α dµ(x) ≥ γkα γkβ c1/2.

the condition α > −β is also necessary.

Problem 7: Let H be a Hilbert space. Show that if T : H → H is symmetric, i.e.
〈x, Ty〉 = 〈Tx, y〉 for all x, y ∈ H, then T is linear and continuous.

Solution: First we show that T is linear. Let x1, x2 ∈ H then for all y ∈ H we have 〈T (x1 +
x2), y〉 = 〈x1 + x2, T y〉 = 〈x1, T y〉 + 〈x2, T y〉 = 〈Tx1, y〉 + 〈Tx2, y〉 = 〈Tx1 + Tx2, y〉. Hence
T (x1 + x2) = Tx1 + Tx2. Similarly one shows that T is homogeneous. To see that T is
continuous we first note that by the closed graph theorem it suffices to show that the graph(T )
is closed. Let (xn, Txn) ∈ graph(T ) be a sequence in H ×H converging to (x, y) ∈ H ×H. We
claim: Tx = y. To see this consider

‖Tx− y‖2 = 〈y − Tx, y − Tx〉 = lim
n
〈Txn − Tx, y − Tx〉 = lim

n
〈xn − x, T (y − Tx)〉 = 0

Hence Tx = y.


