Comprehensive Exam, Fall 2004 (Analysis)

Problem 1: Prove or give a counterexample to the following statement: Every function $f:[0,+\infty) \rightarrow \mathbb{R}$ for which the improper Riemann integral

$$
\int_{0}^{\infty} f(x) d x
$$

is convergent is Lebesgue integrable on $[0,+\infty)$.

Solution:

The statement is not true. Consider a function

$$
f(x)=\frac{\sin x}{x} \quad \text { for } x>0
$$

and $f(0)=1$. It is easy to show that the improper Riemann integral of f is convergent. However the Lebesgue integrals

$$
\int_{[0, \infty)} f^{+}, \quad \text { and } \int_{[0, \infty)} f^{-}
$$

are equal to $+\infty$ so not only is f not integrable but the Lebesgue integral

$$
\int_{[0, \infty)} f
$$

is not even well defined.

Problem 2: Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Let $f_{n}: \Omega \rightarrow \mathbb{R}, n \geq 1$, and $g: \Omega \rightarrow \mathbb{R}$ be functions in $L^{1}(\mu)$ such that there exists a constant $C>0$ such that

$$
\int_{\Omega}\left|f_{n}\right| d \mu \leq C
$$

for all $n \geq 1$. Suppose moreover that

$$
\frac{1}{n} f_{n}^{2} \leq g \quad \text { on } \Omega
$$

Show that

$$
\int_{\Omega} \frac{1}{n} f_{n}^{2} d \mu \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Solution: Denote

$$
A_{n}=\left\{x:\left|f_{n}(x)\right| \geq n^{\frac{1}{3}}\right\}
$$

Then

$$
\int_{\Omega} \frac{1}{n} f_{n}^{2} d \mu=\int_{A_{n}} \frac{1}{n} f_{n}^{2} d \mu+\int_{\Omega \backslash A_{n}} \frac{1}{n} f_{n}^{2} d \mu \leq \int_{A_{n}} g d \mu+\frac{1}{n} n^{\frac{2}{3}} \mu(\Omega)
$$

But

$$
\mu\left(A_{n}\right) \leq \frac{C}{n^{\frac{1}{3}}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and therefore, since $g \in L^{1}(\mu)$,

$$
\int_{A_{n}} g d \mu \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which completes the proof. (The proof of the last convergence can be found in any standard textbook.)

Problem 3: Define

$$
\begin{gathered}
B=C([0,1])=\{f:[0,1] \rightarrow \mathbb{R}: \mathrm{f} \text { is continuous }\}, \quad\|f\|_{B}=\max _{0 \leq x \leq 1}|f(x)| \\
C=C^{\alpha}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{R}: f \in B \text { and }\|f\|_{C}=\|f\|_{B}+\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<+\infty\right\},
\end{gathered}
$$

for some $\alpha \in(0,1]$. It is well known that equipped with the norms $\|\cdot\|_{B}$, and $\|\cdot\|_{C}$, the spaces B, and C respectively are Banach spaces (normed vector spaces complete with respect to the norm metric). Determine if the unit ball is compact in the spaces B and C. Is the unit ball of C compact as a subset of B ?

Solution: Recall that a metric space a set X is compact if and only if every sequence in X has a subsequence converging to an element of X.

The unit ball in B is not compact. For instance consider for $n \geq 1$ a sequence of continuous functions f_{n} such that $f_{n}(x)=0$ if $x \notin(1 /(n+1), 1 / n), f(1 / 2(1 /(n+1)+1 / n))=1$, and $0 \leq f_{n}(x) \leq 1$ for $x \in(1 /(n+1), 1 / n)$. Then $\left\|f_{n}\right\|_{A}=1$ but $\left\|f_{n}-f_{m}\right\|_{A}=1$ if $n \neq m$. Therefore the sequence does not have a convergent subsequence.

The unit ball in C is also not compact. Consider the sequence of functions

$$
f_{n}(x)=\left\{\begin{array}{l}
\frac{x}{2} \quad \text { for } 0 \leq x \leq \frac{1}{2^{n+1}} \tag{1}\\
\frac{1}{2^{n+1}}-\frac{x}{2} \text { for } \frac{1}{2^{n+1}} \leq x \leq \frac{1}{2^{n}} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

It is easy to see that $\left\|f_{n}\right\|_{C}=\frac{1}{2^{n+2}}+\frac{1}{2}$ but if $n \neq m$ then $\left\|f_{n}-f_{m}\right\|_{C} \geq \frac{1}{2^{n+2}}+1 / 2$ so the sequence does not have a convergent subsequence.

However the unit ball in C is compact in B. To see this let f_{n} be functions such that $\left\|f_{n}\right\|_{C} \leq 1$. Then the functions f_{n} are equibounded and equicontinuous and so by the ArzelaAscoli Theorem there is a subsequence $f_{n_{k}}$ that converges uniformly on $[0,1]$ to a continuous function f. Obviously

$$
\|f\|_{B}=\lim _{k \rightarrow \infty}\left\|f_{n_{k}}\right\|_{B}
$$

It remains to show that $\|f\|_{C} \leq 1$. Let now $x \neq y$. Then

$$
\begin{gathered}
\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}=\lim _{k \rightarrow \infty} \frac{\left|f_{n_{k}}(x)-f_{n_{k}}(y)\right|}{|x-y|^{\alpha}} \\
\leq \lim _{k \rightarrow \infty} \sup _{x \neq y} \frac{\left|f_{n_{k}}(x)-f_{n_{k}}(y)\right|}{|x-y|^{\alpha}} \leq \lim _{k \rightarrow \infty}\left(1-\left\|f_{n_{k}}\right\|_{B}\right)=1-\|f\|_{B} .
\end{gathered}
$$

Therefore $\|f\|_{C} \leq 1$.

Problem 4: Let $f:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that
(i) for each $t \in[a, b]$, the function $x \rightarrow f(t, x)$ is continuous,
(ii) for each $x \in \mathbb{R}^{n}$, the function $t \rightarrow f(t, x)$ is Lebesgue measurable.

Show that f is $\mathcal{L} \otimes \mathcal{B}$ measurable, where \mathcal{L} is the class of Lebesgue measurable sets on $[a, b], \mathcal{B}$ is the Borel σ-algebra on \mathbb{R}^{n}, and $\mathcal{L} \otimes \mathcal{B}$ is the product σ-algebra of \mathcal{L} and \mathcal{B}.

Solution: Let $r_{1}, \ldots, r_{n}, \ldots$ be a dense subset of \mathbb{R}^{n} (for instance a sequence of all points with rational coordinates). For each integer $m \geq 1$ define a function $f_{n}:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f_{m}(t, x)=f\left(t, r_{k}\right) \quad \text { if }\left|x-r_{k}\right|<\frac{1}{m} \text { but }\left|x-r_{i}\right| \geq \frac{1}{m} \text { for } 1 \leq i<k
$$

Then, by (i), for every $(t, x) \in[a, b] \times \mathbb{R}^{n} f_{m}(t, x) \rightarrow f(t, x)$ as $m \rightarrow \infty$. Since the limit of measurable functions is measurable it is enough to show that the functions f_{m} are $\mathcal{L} \otimes \mathcal{B}$ measurable. To this end choose an open set $U \subset \mathbb{R}^{n}$. Then

$$
\begin{gathered}
f_{m}^{-1}(U)=\bigcup_{m=1}^{\infty}\left\{(t, x) \in[a, b] \times \mathbb{R}^{n}: f\left(t, r_{k}\right) \in U,\left|x-r_{k}\right|<\frac{1}{m},\left|x-r_{i}\right| \geq \frac{1}{m} \text { for } 1 \leq i<k .\right\} \\
=\bigcup_{m=1}^{\infty}\left(\left\{t \in[a, b]: f\left(t, r_{k}\right) \in U\right\} \times\left\{x \in \mathbb{R}^{n}:\left|x-r_{k}\right|<\frac{1}{m},\left|x-r_{i}\right| \geq \frac{1}{m} \text { for } 1 \leq i<k .\right\}\right) \\
=\bigcup_{m=1}^{\infty}((\text { set in } \mathcal{L}) \times(\operatorname{set} \text { in } \mathcal{B})) \in \mathcal{L} \otimes \mathcal{B} .
\end{gathered}
$$

Problem 5: Fix a prime number p. A rational number x can be represented by $x=p^{\alpha} \frac{k}{l}$ with k, l not divisible by p, and $\alpha \in \mathbb{Z}$ is defined uniquely. Define $|\cdot|_{p}: \mathbb{Q} \rightarrow \mathbb{R}$ by

$$
|x|_{p}:=p^{-\alpha}, \quad \text { and } \quad|0|_{p}:=0
$$

(a) Show that $|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$ and conclude that $d(x, y):=|x-y|_{p}$ defines a metric on \mathbb{Q}.
(b) Show that in the completion of \mathbb{Q} w.r.t. the above metric a series of rational numbers

$$
\sum_{n \geq 0} a_{n}
$$

converges if and only if $\left|a_{n}\right|_{p} \rightarrow 0$.

Solution: (a) write $x=p^{\alpha_{1}} k_{1} / l_{1}$ and $y=p^{\alpha_{2}} k_{2} / l_{2}\left(k_{1}, k_{2}, l_{1}, l_{2}\right.$ not divisible by $\left.p\right)$. We may assume $\alpha_{1} \geq \alpha_{2}$. Then

$$
|x+y|_{p}=\left|p^{\alpha_{2}}\left(p^{\alpha_{1}-\alpha_{2}} l_{2} k_{1}+l_{1} k_{2}\right) /\left(l_{1} l_{2}\right)\right|_{p}=\left|p^{\alpha_{2}}\right|_{p}=p^{-\alpha_{2}}
$$

since p does not divide the terms in parenthesis above. Note that $\max \left\{|x|_{p},|y|_{p}\right\} \leq|x|_{p}+|y|_{p}$. Hence $d(x, z)=|x-y+y-z|_{p} \leq|x-y|_{p}+|y-z|_{p}$, proving the triangle inequality. Obviously d is symmetric and $d(x, y)=0$ iff $x=y$.
(b) Consider the partial sums $S_{N}=\sum_{n=1}^{N} a_{n}$. Suppose S_{N} converges. Then S_{N} is a Cauchy sequence, hence for $\epsilon>0$ there is N_{ϵ} such that

$$
\left|a_{N}\right|_{p}=\left|S_{N}-S_{N-1}\right|_{p} \leq \epsilon
$$

for $N \geq N_{\epsilon}$. So $\left|a_{N}\right|_{p} \rightarrow 0$ w.r.t. the metric d. Suppose now $a_{n} \rightarrow 0$, i.e. $\left|a_{n}\right|_{p} \rightarrow 0$. Then for $M, N \in \mathbb{N}$

$$
\left|S_{N+M}-S_{M}\right|_{p} \leq \max \left\{\left|a_{N+1}\right|_{p}, \ldots . .,\left|a_{N+M}\right|_{p}\right\} \rightarrow 0
$$

Hence S_{N} is a Cauchy sequences which converges in the completion of \mathbb{Q} w.r.t. the metric d.

Problem 6: Let (X, d) be a compact metric space and denote by $B_{R}(a) \subset X$ the closed ball of radius $R>0$ centered at $a \in X$. Suppose μ is a positive Borel measure on X satisfying for some $\beta>0$ and for all $r \in(0,1)$ and $a \in X$

$$
c_{1} r^{\beta} \leq \mu\left(B_{r}(a)\right) \leq r^{\beta}
$$

with $c_{1}>0$ independent of r and a. Fix a point $a \in X$. Find all $\alpha \in \mathbb{R}$ for which $x \mapsto d(x, a)^{\alpha}$ is in $L^{1}(X, d \mu)$.

Solution: Only the case $\alpha<0$ is interesting. Since $d(x, a)^{\alpha}$ is bounded and continuous away from a it suffices to check whether

$$
\int_{B_{1}(a)} d(x, a)^{\alpha} d \mu(x)<\infty
$$

Let $\left\{R_{k}\right\}$ be a strictly monotone decreasing sequence of positive reals and denote by B_{k} the balls $B_{R_{k}}(a)$. We will choose R_{k} such that $B_{k} \backslash B_{k+1}$ has essentially the same measure as B_{k}. To achieve this we compute

$$
\mu\left(B_{k} \backslash B_{k+1}\right)=\mu\left(B_{k}\right)-\mu\left(B_{k+1}\right) \geq c_{1} R_{k}^{\beta}-R_{k+1}^{\beta}
$$

Hence, if we choose $R_{k+1}=R_{k} \gamma, 0<\gamma<1$, the last term is $R_{k}^{\beta}\left(c_{1}-\gamma^{\beta}\right)$ which by appropriate choice of γ equals $R_{k}^{\beta} c_{1} / 2$. We set $R_{k}=\gamma^{k}, k=0,1, \ldots$ and write

$$
\int_{B_{1}(a)} d(x, a)^{\alpha} d \mu(x)=\sum_{k \geq 0} \int_{B_{k} \backslash B_{k+1}} d(x, a)^{\alpha} d \mu(x)
$$

On each "shell" $B_{k} \backslash B_{k+1}$ we may bound the integrand above by R_{k+1}^{α} and from below by R_{k}^{α}. Since the shells have μ-measure at most R_{k}^{β} we find that

$$
\int_{B_{1}(a)} d(x, a)^{\alpha} d \mu(x) \leq \sum_{k} \gamma^{(k+1) \alpha} \gamma^{k \beta}
$$

The latter geometric series converges if $\alpha>-\beta$. Since we also have

$$
\int_{B_{k} \backslash B_{k+1}} d(x, a)^{\alpha} d \mu(x) \geq \gamma^{k \alpha} \gamma^{k \beta} c_{1} / 2 .
$$

the condition $\alpha>-\beta$ is also necessary.

Problem 7: Let H be a Hilbert space. Show that if $T: H \rightarrow H$ is symmetric, i.e. $\langle x, T y\rangle=\langle T x, y\rangle$ for all $x, y \in H$, then T is linear and continuous.

Solution: First we show that T is linear. Let $x_{1}, x_{2} \in H$ then for all $y \in H$ we have $\left\langle T\left(x_{1}+\right.\right.$ $\left.\left.x_{2}\right), y\right\rangle=\left\langle x_{1}+x_{2}, T y\right\rangle=\left\langle x_{1}, T y\right\rangle+\left\langle x_{2}, T y\right\rangle=\left\langle T x_{1}, y\right\rangle+\left\langle T x_{2}, y\right\rangle=\left\langle T x_{1}+T x_{2}, y\right\rangle$. Hence $T\left(x_{1}+x_{2}\right)=T x_{1}+T x_{2}$. Similarly one shows that T is homogeneous. To see that T is continuous we first note that by the closed graph theorem it suffices to show that the $\operatorname{graph}(T)$ is closed. Let $\left(x_{n}, T x_{n}\right) \in \operatorname{graph}(T)$ be a sequence in $H \times H$ converging to $(x, y) \in H \times H$. We claim: $T x=y$. To see this consider

$$
\|T x-y\|^{2}=\langle y-T x, y-T x\rangle=\lim _{n}\left\langle T x_{n}-T x, y-T x\right\rangle=\lim _{n}\left\langle x_{n}-x, T(y-T x)\right\rangle=0
$$

Hence $T x=y$.

