Comprehensive Exam, Fall 2004 (Analysis)

Problem 1: Prove or give a counterexample to the following statement: Every function $f: [0, +\infty) \to \mathbb{R}$ for which the improper Riemann integral

$$\int_0^\infty f(x)dx$$

is convergent is Lebesgue integrable on $[0, +\infty)$.

Solution:

The statement is not true. Consider a function

$$f(x) = \frac{\sin x}{x} \quad \text{for } x > 0$$

and f(0) = 1. It is easy to show that the improper Riemann integral of f is convergent. However the Lebesgue integrals

$$\int_{[0,\infty)} f^+$$
, and $\int_{[0,\infty)} f^-$

are equal to $+\infty$ so not only is f not integrable but the Lebesgue integral

$$\int_{[0,\infty)} f$$

is not even well defined.

<u>Problem</u> 2: Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Let $f_n : \Omega \to \mathbb{R}, n \ge 1$, and $g : \Omega \to \mathbb{R}$ be functions in $L^1(\mu)$ such that there exists a constant C > 0 such that

$$\int_{\Omega} |f_n| \ d\mu \le C$$

for all $n \geq 1$. Suppose moreover that

$$\frac{1}{n}f_n^2 \le g \quad \text{on } \Omega.$$

Show that

$$\int_{\Omega} \frac{1}{n} f_n^2 \ d\mu \to 0 \quad \text{as } n \to \infty.$$

Solution: Denote

$$A_n = \{ x : |f_n(x)| \ge n^{\frac{1}{3}} \}.$$

Then

$$\int_{\Omega} \frac{1}{n} f_n^2 d\mu = \int_{A_n} \frac{1}{n} f_n^2 d\mu + \int_{\Omega \setminus A_n} \frac{1}{n} f_n^2 d\mu \le \int_{A_n} g d\mu + \frac{1}{n} n^{\frac{2}{3}} \mu(\Omega).$$

But

$$\mu(A_n) \le \frac{C}{n^{\frac{1}{3}}} \to 0 \quad \text{as } n \to \infty$$

and therefore, since $g \in L^1(\mu)$,

$$\int_{A_n} g d\mu \to 0 \quad \text{as } n \to \infty$$

which completes the proof. (The proof of the last convergence can be found in any standard textbook.)

Problem 3: Define

$$B = C([0,1]) = \{f : [0,1] \to \mathbb{R} : \text{ f is continuous}\}, \quad \|f\|_B = \max_{0 \le x \le 1} |f(x)|$$
$$C = C^{\alpha}([0,1]) = \{f : [0,1] \to \mathbb{R} : f \in B \text{ and } \|f\|_C = \|f\|_B + \sup_{x \ne y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty\},$$

for some $\alpha \in (0, 1]$. It is well known that equipped with the norms $\|\cdot\|_B$, and $\|\cdot\|_C$, the spaces B, and C respectively are Banach spaces (normed vector spaces complete with respect to the norm metric). Determine if the unit ball is compact in the spaces B and C. Is the unit ball of C compact as a subset of B?

<u>Solution</u>: Recall that a metric space a set X is compact if and only if every sequence in X has a subsequence converging to an element of X.

The unit ball in B is not compact. For instance consider for $n \ge 1$ a sequence of continuous functions f_n such that $f_n(x) = 0$ if $x \notin (1/(n+1), 1/n)$, f(1/2(1/(n+1)+1/n)) = 1, and $0 \le f_n(x) \le 1$ for $x \in (1/(n+1), 1/n)$. Then $||f_n||_A = 1$ but $||f_n - f_m||_A = 1$ if $n \ne m$. Therefore the sequence does not have a convergent subsequence.

The unit ball in C is also not compact. Consider the sequence of functions

$$f_n(x) = \begin{cases} \frac{x}{2} & \text{for } 0 \le x \le \frac{1}{2^{n+1}}, \\ \frac{1}{2^{n+1}} - \frac{x}{2} & \text{for } \frac{1}{2^{n+1}} \le x \le \frac{1}{2^n}, \\ 0 & \text{otherwise.} \end{cases}$$
(1)

It is easy to see that $||f_n||_C = \frac{1}{2^{n+2}} + \frac{1}{2}$ but if $n \neq m$ then $||f_n - f_m||_C \geq \frac{1}{2^{n+2}} + 1/2$ so the sequence does not have a convergent subsequence.

However the unit ball in C is compact in B. To see this let f_n be functions such that $||f_n||_C \leq 1$. Then the functions f_n are equibounded and equicontinuous and so by the Arzela-Ascoli Theorem there is a subsequence f_{n_k} that converges uniformly on [0, 1] to a continuous function f. Obviously

$$\|f\|_B = \lim_{k \to \infty} \|f_{n_k}\|_B.$$

It remains to show that $||f||_C \leq 1$. Let now $x \neq y$. Then

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} = \lim_{k \to \infty} \frac{|f_{n_k}(x) - f_{n_k}(y)|}{|x - y|^{\alpha}}$$
$$\leq \lim_{k \to \infty} \sup_{x \neq y} \frac{|f_{n_k}(x) - f_{n_k}(y)|}{|x - y|^{\alpha}} \leq \lim_{k \to \infty} (1 - \|f_{n_k}\|_B) = 1 - \|f\|_B$$

Therefore $||f||_C \leq 1$.

Problem 4: Let $f : [a, b] \times \mathbb{R}^n \to \mathbb{R}$ be a function such that (i) for each $t \in [a, b]$, the function $x \to f(t, x)$ is continuous, (ii) for each $x \in \mathbb{R}^n$, the function $t \to f(t, x)$ is Lebesgue measurable.

Show that f is $\mathcal{L} \otimes \mathcal{B}$ measurable, where \mathcal{L} is the class of Lebesgue measurable sets on [a, b], \mathcal{B} is the Borel σ -algebra on \mathbb{R}^n , and $\mathcal{L} \otimes \mathcal{B}$ is the product σ -algebra of \mathcal{L} and \mathcal{B} .

Solution: Let $r_1, ..., r_n, ...$ be a dense subset of \mathbb{R}^n (for instance a sequence of all points with rational coordinates). For each integer $m \ge 1$ define a function $f_n : [a, b] \times \mathbb{R}^n \to \mathbb{R}$ by

$$f_m(t,x) = f(t,r_k)$$
 if $|x - r_k| < \frac{1}{m}$ but $|x - r_i| \ge \frac{1}{m}$ for $1 \le i < k$

Then, by (i), for every $(t,x) \in [a,b] \times \mathbb{R}^n$ $f_m(t,x) \to f(t,x)$ as $m \to \infty$. Since the limit of measurable functions is measurable it is enough to show that the functions f_m are $\mathcal{L} \otimes \mathcal{B}$ measurable. To this end choose an open set $U \subset \mathbb{R}^n$. Then

$$f_m^{-1}(U) = \bigcup_{m=1}^{\infty} \left\{ (t,x) \in [a,b] \times \mathbb{R}^n : f(t,r_k) \in U, |x-r_k| < \frac{1}{m}, |x-r_i| \ge \frac{1}{m} \text{ for } 1 \le i < k. \right\}$$
$$= \bigcup_{m=1}^{\infty} \left(\left\{ t \in [a,b] : f(t,r_k) \in U \right\} \times \left\{ x \in \mathbb{R}^n : |x-r_k| < \frac{1}{m}, |x-r_i| \ge \frac{1}{m} \text{ for } 1 \le i < k. \right\} \right)$$
$$= \bigcup_{m=1}^{\infty} \left((\text{set in } \mathcal{L}) \times (\text{set in } \mathcal{B})) \in \mathcal{L} \otimes \mathcal{B}.$$

Problem 5: Fix a prime number p. A rational number x can be represented by $x = p^{\alpha} \frac{k}{l}$ with k, l not divisible by p, and $\alpha \in \mathbb{Z}$ is defined uniquely. Define $|\cdot|_p : \mathbb{Q} \to \mathbb{R}$ by

$$|x|_p := p^{-\alpha}$$
, and $|0|_p := 0$.

(a) Show that $|x+y|_p \le \max\{|x|_p, |y|_p\}$ and conclude that $d(x, y) := |x-y|_p$ defines a metric on \mathbb{Q} .

(b) Show that in the completion of \mathbb{Q} w.r.t. the above metric a series of rational numbers

$$\sum_{n \ge 0} a_n$$

converges if and only if $|a_n|_p \to 0$.

<u>Solution</u>: (a) write $x = p^{\alpha_1} k_1/l_1$ and $y = p^{\alpha_2} k_2/l_2$ $(k_1, k_2, l_1, l_2$ not divisible by p). We may assume $\alpha_1 \ge \alpha_2$. Then

$$|x+y|_p = |p^{\alpha_2}(p^{\alpha_1-\alpha_2}l_2k_1+l_1k_2)/(l_1l_2)|_p = |p^{\alpha_2}|_p = p^{-\alpha_2}$$

since p does not divide the terms in parenthesis above. Note that $\max\{|x|_p, |y|_p\} \leq |x|_p + |y|_p$. Hence $d(x, z) = |x - y + y - z|_p \leq |x - y|_p + |y - z|_p$, proving the triangle inequality. Obviously d is symmetric and d(x, y) = 0 iff x = y.

(b) Consider the partial sums $S_N = \sum_{n=1}^N a_n$. Suppose S_N converges. Then S_N is a Cauchy sequence, hence for $\epsilon > 0$ there is N_{ϵ} such that

$$|a_N|_p = |S_N - S_{N-1}|_p \le \epsilon$$

for $N \ge N_{\epsilon}$. So $|a_N|_p \to 0$ w.r.t. the metric d. Suppose now $a_n \to 0$, i.e. $|a_n|_p \to 0$. Then for $M, N \in \mathbb{N}$

$$|S_{N+M} - S_M|_p \le \max\{|a_{N+1}|_p, \dots, |a_{N+M}|_p\} \to 0$$

Hence S_N is a Cauchy sequences which converges in the completion of \mathbb{Q} w.r.t. the metric d.

<u>Problem</u> 6: Let (X, d) be a compact metric space and denote by $B_R(a) \subset X$ the closed ball of radius R > 0 centered at $a \in X$. Suppose μ is a positive Borel measure on X satisfying for some $\beta > 0$ and for all $r \in (0, 1)$ and $a \in X$

$$c_1 r^{\beta} \le \mu(B_r(a)) \le r^{\beta},$$

with $c_1 > 0$ independent of r and a. Fix a point $a \in X$. Find all $\alpha \in \mathbb{R}$ for which $x \mapsto d(x, a)^{\alpha}$ is in $L^1(X, d\mu)$.

<u>Solution</u>: Only the case $\alpha < 0$ is interesting. Since $d(x, a)^{\alpha}$ is bounded and continuous away from a it suffices to check whether

$$\int_{B_1(a)} d(x,a)^{\alpha} d\mu(x) < \infty.$$

Let $\{R_k\}$ be a strictly monotone decreasing sequence of positive reals and denote by B_k the balls $B_{R_k}(a)$. We will choose R_k such that $B_k \setminus B_{k+1}$ has essentially the same measure as B_k . To achieve this we compute

$$\mu(B_k \setminus B_{k+1}) = \mu(B_k) - \mu(B_{k+1}) \ge c_1 R_k^\beta - R_{k+1}^\beta$$

Hence, if we choose $R_{k+1} = R_k \gamma$, $0 < \gamma < 1$, the last term is $R_k^\beta(c_1 - \gamma^\beta)$ which by appropriate choice of γ equals $R_k^\beta c_1/2$. We set $R_k = \gamma^k$, $k = 0, 1, \dots$ and write

$$\int_{B_1(a)} d(x,a)^{\alpha} d\mu(x) = \sum_{k \ge 0} \int_{B_k \setminus B_{k+1}} d(x,a)^{\alpha} d\mu(x)$$

On each "shell" $B_k \setminus B_{k+1}$ we may bound the integrand above by R_{k+1}^{α} and from below by R_k^{α} . Since the shells have μ -measure at most R_k^{β} we find that

$$\int_{B_1(a)} d(x,a)^{\alpha} d\mu(x) \le \sum_k \gamma^{(k+1)\alpha} \gamma^{k\beta}.$$

The latter geometric series converges if $\alpha > -\beta$. Since we also have

$$\int_{B_k \setminus B_{k+1}} d(x,a)^{\alpha} d\mu(x) \ge \gamma^{k\alpha} \gamma^{k\beta} c_1/2.$$

the condition $\alpha > -\beta$ is also necessary.

Problem 7: Let *H* be a Hilbert space. Show that if $T : H \to H$ is symmetric, i.e. $\langle x, Ty \rangle = \langle Tx, y \rangle$ for all $x, y \in H$, then *T* is linear and continuous.

Solution: First we show that T is linear. Let $x_1, x_2 \in H$ then for all $y \in H$ we have $\langle T(x_1 + x_2), y \rangle = \langle x_1 + x_2, Ty \rangle = \langle x_1, Ty \rangle + \langle x_2, Ty \rangle = \langle Tx_1, y \rangle + \langle Tx_2, y \rangle = \langle Tx_1 + Tx_2, y \rangle$. Hence $T(x_1 + x_2) = Tx_1 + Tx_2$. Similarly one shows that T is homogeneous. To see that T is continuous we first note that by the closed graph theorem it suffices to show that the graph(T) is closed. Let $(x_n, Tx_n) \in graph(T)$ be a sequence in $H \times H$ converging to $(x, y) \in H \times H$. We claim: Tx = y. To see this consider

$$||Tx - y||^2 = \langle y - Tx, y - Tx \rangle = \lim_n \langle Tx_n - Tx, y - Tx \rangle = \lim_n \langle x_n - x, T(y - Tx) \rangle = 0$$

Hence Tx = y.