Instructions: Attempt any five questions, and please provide careful and complete answers with proofs. If you attempt more questions, specify which five should be graded.

1. Let x and y be elements of a group G such that x has order 3 , and y is not the identity and has odd order. If $x y x^{-1}=y^{17}$, determine the order of y.
2. Let G be a finite group and p the smallest prime dividing the order of G. Let H be a subgroup of index p. Prove that H is normal in G.
3. Does there exist a field K such that the multiplicative group $K^{*}=K \backslash\{0\}$ is isomorphic to the Klein-4-group, $\mathbb{Z}_{5} \times \mathbb{Z}_{7}$?
4. Consider the field $K=\mathbb{Q}(\sqrt{2}+\sqrt{7})$. Find the set $\mu(K)$ of all roots of unity K and describe which abelian group it is isomorphic to.
5. Is every ideal of the ring $\mathbb{Z} \times \mathbb{Z}$ a principal ideal? Prove or disprove.
6. Let R denote the set of all periodic sequences of real numbers, ie:

$$
R=\left\{\alpha: \mathbb{N} \rightarrow \mathbb{R}, \alpha_{n+d}=\alpha_{n} \text { for some } d\right\}
$$

R is a ring with point-wise addition and multiplication:

$$
(\alpha+\beta)_{n}=\alpha_{n}+\beta_{n}, \quad(\alpha \beta)_{n}=a_{n} \beta_{n} .
$$

(a) Is R an integral domain? Justify your answer.
(b) Let \mathbf{c} denote the constant sequence (c, c, c, \ldots) for $c \in \mathbb{R}$. Find all solutions in R of the polynomial equation:

$$
x^{2}-\mathbf{1}=\mathbf{0}
$$

7. Let A be a square matrix with complex entries, and ϵ a positive real number. Prove that $\epsilon I+A^{*} A$ is nonsingular.
8. Consider a group homomorphism $f: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{2}$. List, up to isomorphism, all the possibilities for the kernel of f. Hint: It is a finite list.
