Algebra Comprehensive Exam Fall 2005

Instructions: Attempt any five questions, and please provide careful and complete answers with proofs. If you attempt more questions, specify which five should be graded.

1. Let x and y be elements of a group G such that x has order 3 , and y is not the identity and has odd order. If $x y x^{-1}=y^{17}$, determine the order of y.
Solution: Using $x^{n} y x^{-n}=y^{17^{n}}$ with $n=3$, we get $y=y^{4913}$, so the order of y divides $4912=2^{4} 307$. Since the order is an odd integer greater than 1 , it must be 307 .
2. Let G be a finite group and p the smallest prime dividing the order of G. Let H be a subgroup of index p. Prove that H is normal in G.
Solution: Let N denote the normalizer of H. Since $H \subset N$, and $|G: N| \leq|G: H|$, it follows $N=G$ or $N=H$. If $N=G$ OK. Otherwise, the orbit of H under conjugation contains p elements. The action of G on that orbit gives a homomorphism from G to the symmetric group S_{p}. Let K be the kernel of this homomorphism. K is the intersection of the isotropy groups, and the isotropy of H is H, by assumption. So, $K \subset H$. If $K \neq H$, then from $|G: K|=|G: H||H: K|=p|H: K|$ and the fact that only the first power of p divides $p!$, we conclude that some prime dividing $(p-1)$! also divides $|H: K|$ contrary to the hypothesis on p.
3. Does there exist a field K such that the multiplicative group $K^{*}=K \backslash\{0\}$ is isomorphic to the Klein-4-group, $\mathbb{Z}_{5} \times \mathbb{Z}_{7}$?
Solution: No: even though $\mathbb{Z}_{5} \times \mathbb{Z}_{7}=\mathbb{Z}_{3} 5$ is cyclic, then K has 36 elements, impossible since finite fields have elements a power of a prime number.
4. Consider the field $K=\mathbb{Q}(\sqrt{2}+\sqrt{7})$. Find the set $\mu(K)$ of all roots of unity K and describe which abelian group it is isomorphic to.
Solution: K is a real subfield of \mathbb{C}, and its intersection with the unit circle around 0 is the set $\mu(K)=\{-1,1\}$. This is a cyclic abelian group of order 2 .
5. Is every ideal of the ring $\mathbb{Z} \times \mathbb{Z}$ a principal ideal? Prove or disprove.

Solution: In general, every ideal of a ring $R_{1} \times R_{2}$ is of the form $I_{1} \times I_{2}$ for ideals I_{i} of R_{i}. Since every ideal of \mathbb{Z} is principal, it follows that every ideal of $\mathbb{Z} \times \mathbb{Z}$ consists of all multiples of some element $\left(n_{1}, n_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$, hence is principal.
6. Let R denote the set of all periodic sequences of real numbers, ie:

$$
R=\left\{\alpha: \mathbb{N} \rightarrow \mathbb{R}, \alpha_{n+d}=\alpha_{n} \text { for some } d\right\} .
$$

R is a ring with point-wise addition and multiplication:

$$
(\alpha+\beta)_{n}=\alpha_{n}+\beta_{n}, \quad(\alpha \beta)_{n}=a_{n} \beta_{n} .
$$

(a) Is R an integral domain? Justify your answer.
(b) Let \mathbf{c} denote the constant sequence (c, c, c, \ldots) for $c \in \mathbb{R}$. Find all solutions in R of the polynomial equation:

$$
x^{2}-\mathbf{1}=\mathbf{0}
$$

Solution: (a) R is not an integral domain since

$$
(1,0,1,0, \ldots) \cdot(0,1,0,1, \ldots)=(0,0,0,0, \ldots) .
$$

(b) The equation has solution all periodic sequences with terms ± 1.
7. Let A be a square matrix with complex entries, and ϵ a positive real number. Prove that $\epsilon I+A^{*} A$ is nonsingular.

Solution: If $B=\epsilon I+A^{*} A$, and v a vector, and \cdot the inner product. We can compute $B v \cdot v=\epsilon v \cdot v+A v \cdot A v \geq \epsilon v \cdot v=0$ iff $v=0$.
8. Consider a group homomorphism $f: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{2}$. List, up to isomorphism, all the possibilities for the kernel of f. Hint: It is a finite list.
Solution: Every subgroup of \mathbb{Z}^{4} is isomorphic to \mathbb{Z}^{n} for $n=0,1,2,3,4$. It cannot be 0,1 since then the image is too big. So, $\mathbb{Z}^{2}, \mathbb{Z}^{3}, \mathbb{Z}^{4}$ are the three possibilities.

