Instructions: Attempt any five questions, and please provide careful and complete answers with proofs. If you attempt more questions, specify which five should be graded. Otherwise, by default, only the first five will be graded.

1. (a) For $1<p<\infty$, show that for each $f \in L^{p}([0,1], \mathrm{d} x)$ there is a unique $g \in$ $L^{q}([0,1], \mathrm{d} x)$, where $1 / p+1 / q=1$ so that

$$
\begin{equation*}
\int_{[0,1]} f g \mathrm{~d} x=\|f\|_{p} \quad \text { and } \quad\|g\|_{q}=1 \tag{*}
\end{equation*}
$$

(b) Give an example of an $f \in L^{1}([0,1], \mathrm{d} x)$ for which there are infinitely many $g \in$ $L^{\infty}([0,1], \mathrm{d} x)$ so that $(*)$ holds.
(c) Give an example of an $f \in L^{\infty}([0,1], \mathrm{d} x)$ for which there is no $g \in L^{1}([0,1], \mathrm{d} x)$ so that (*) holds.
2. Is there a function $f \in L^{p}([0,1], \mathrm{d} x)$ for all $1 \leq p<\infty$ such that for each x in $[0,1]$,

$$
\limsup _{z \rightarrow x} f(z)=+\infty \quad \text { and } \quad \liminf _{z \rightarrow x} f(z)=-\infty ?
$$

Either prove that there is no such function, or give an example.
3. (a) Let (X, \mathcal{S}, μ) be a measure space. Let $1<p<\infty$, and suppose that f is a measurable function on X such that for some $C<\infty$

$$
\begin{equation*}
\int_{A}|f(x)| \mathrm{d} \mu \leq C \mu(A)^{1 / p^{\prime}} \tag{*}
\end{equation*}
$$

for every measurable set $A \subset X$, where $1 / p+1 / p^{\prime}=1$. Show that this does not imply that $f \in L^{p}(X, \mathcal{S}, \mu)$.
(b) Suppose in addition to $(*)$ that for some q with $p<q<\infty$, there is a constant $D<\infty$ such that

$$
\begin{equation*}
\int_{A}|f(x)| \mathrm{d} \mu \leq D \mu(A)^{1 / q^{\prime}} \tag{**}
\end{equation*}
$$

for every measurable set $A \subset X$, where $1 / q+1 / q^{\prime}=1$. Show that then $f \in L^{r}(X, \mathcal{S}, \mu)$ for each r with $p<r<q$.

4 Let $F(x, y)$ be a continuous function on $[0,1] \times[0,1]$. Define a linear transformation $T: \mathcal{C}([0,1]) \rightarrow \mathcal{C}([0,1])$ by

$$
T f(x)=\int_{0}^{1} F(x, y) f(y) \mathrm{d} y
$$

Show that if $\left\{f_{n}\right\}$ is any sequence in $\mathcal{C}([0,1])$ with

$$
\sup _{n}\left\|f_{n}\right\|_{\mathcal{C}([0,1])}<\infty
$$

then there is a subsequence of $\left\{T f_{n}\right\}$ that is strongly convergent in $\mathcal{C}([0,1])$.

5 Let S be a closed linear subspace of $L^{1}([0,1])$ with the property that for each individual $f \in S$, there is some $p>1$ so that $f \in L^{p}([0,1])$. Show that there is then some $p>1$ so that $S \subset L^{p}([0,1])$.
6. Let (X, \mathcal{S}, μ) be a measure space and $f \in L^{1}(X, \mu)$. Show that there exists a convex increasing function $\phi:[0, \infty) \rightarrow \mathbf{R}$ such that

$$
\phi(0)=0, \quad \lim _{t \rightarrow \infty} \frac{\phi(t)}{t}=\infty
$$

and

$$
\phi(|f|) \in L^{1}(X, \mu)
$$

7. Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous, $g:[0,1] \rightarrow \mathbf{R}$ Lebesgue measurable, and $0 \leq g(x) \leq 1$ for a.e. $x \in[0,1]$. Find the limit:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(g(x)^{n}\right) d x
$$

8. Let X and Y be metric spaces and $f: X \rightarrow Y$ be a mapping. Show that if the restriction of f on any compact subset of X is continuous, then f is continuous on X.
