Instructions: Attempt any **five** questions, and please provide **careful and complete answers with proofs**. If you attempt more questions, specify which five should be graded. Otherwise, by default, only the first five will be graded.

1. (a) For $1 , show that for each <math>f \in L^p([0,1], dx)$ there is a unique $g \in L^q([0,1], dx)$, where 1/p + 1/q = 1 so that

$$\int_{[0,1]} fg dx = \|f\|_p \quad \text{and} \quad \|g\|_q = 1 .$$
 (*)

(b) Give an example of an $f \in L^1([0,1], dx)$ for which there are *infinitely many* $g \in L^\infty([0,1], dx)$ so that (*) holds.

(c) Give an example of an $f \in L^{\infty}([0,1], dx)$ for which there is $no \ g \in L^1([0,1], dx)$ so that (*) holds.

2. Is there a function $f \in L^p([0,1], dx)$ for all $1 \le p < \infty$ such that for each x in [0,1],

$$\limsup_{z \to x} f(z) = +\infty \quad \text{and} \quad \liminf_{z \to x} f(z) = -\infty ?$$

Either prove that there is no such function, or give an example.

3. (a) Let (X, S, μ) be a measure space. Let 1 , and suppose that <math>f is a measurable function on X such that for some $C < \infty$

$$\int_{A} |f(x)| \mathrm{d}\mu \le C\mu(A)^{1/p'} \tag{(*)}$$

for every measurable set $A \subset X$, where 1/p + 1/p' = 1. Show that this does not imply that $f \in L^p(X, \mathcal{S}, \mu)$.

(b) Suppose in addition to (*) that for some q with $p < q < \infty$, there is a constant $D < \infty$ such that

$$\int_{A} |f(x)| \mathrm{d}\mu \le D\mu(A)^{1/q'} \tag{**}$$

for every measurable set $A \subset X$, where 1/q + 1/q' = 1. Show that then $f \in L^r(X, S, \mu)$ for each r with p < r < q.

4 Let F(x, y) be a continuous function on $[0, 1] \times [0, 1]$. Define a linear transformation $T : \mathcal{C}([0, 1]) \to \mathcal{C}([0, 1])$ by

$$Tf(x) = \int_0^1 F(x, y) f(y) \mathrm{d}y \; .$$

Show that if $\{f_n\}$ is any sequence in $\mathcal{C}([0,1])$ with

$$\sup_n \|f_n\|_{\mathcal{C}([0,1])} < \infty ,$$

then there is a subsequence of $\{Tf_n\}$ that is strongly convergent in $\mathcal{C}([0,1])$.

5 Let S be a closed linear subspace of $L^1([0,1])$ with the property that for each individual $f \in S$, there is some p > 1 so that $f \in L^p([0,1])$. Show that there is then some p > 1 so that $S \subset L^p([0,1])$.

6. Let (X, \mathcal{S}, μ) be a measure space and $f \in L^1(X, \mu)$. Show that there exists a convex increasing function $\phi : [0, \infty) \to \mathbf{R}$ such that

$$\phi(0) = 0, \quad \lim_{t \to \infty} \frac{\phi(t)}{t} = \infty,$$

and

$$\phi(|f|) \in L^1(X,\mu).$$

7. Let $f : [0,1] \to \mathbf{R}$ be continuous, $g : [0,1] \to \mathbf{R}$ Lebesgue measurable, and $0 \le g(x) \le 1$ for a.e. $x \in [0,1]$. Find the limit:

$$\lim_{n \to \infty} \int_0^1 f(g(x)^n) \, dx.$$

8. Let X and Y be metric spaces and $f : X \to Y$ be a mapping. Show that if the restriction of f on any compact subset of X is continuous, then f is continuous on X.