Algebra, Spring 2004.

Attempt any five questions, and please provide careful and complete answers. If you attempt more than five questions, specify which should be graded.

- 1. How many elements of the permutation group S_7 commute with the permutation $(12)(34) \in S_7$?
- 2. Recall that $SL_2(\mathbb{Z}/5\mathbb{Z})$ is the group of 2×2 matrices of determinant 1, which have entries in $\mathbb{Z}/5\mathbb{Z}$. Determine the number of 5-Sylow subgroups of $SL_2(\mathbb{Z}/5\mathbb{Z})$.
- 3. Let I be the ideal of the polynomial ring $\mathbb{R}[x]$ generated by the elements $x^3 + 1$ and $x^4 + 3x + 2$. Is it possible to generate I by one element? Is I a prime ideal? Is it maximal?
- 4. Let K be a field with 49 elements. For each of the polynomials below, determine the number of distinct roots in K.

$$x^{48} - 1, \qquad x^{49} - 1, \qquad x^{54} - 1.$$

- 5. Let $\xi = e^{2\pi i/5}$. Determine the degrees of the field extensions
 - (a) $[\mathbb{Q}(\xi) : \mathbb{Q}],$
 - (b) $[\mathbb{Q}(\xi,\sqrt{5}):\mathbb{Q}].$
- 6. Determine all 3×3 matrices M with rational entries for which M^7 is the identity matrix.
- 7. (a) Let A and B be $n \times n$ matrices over the complex numbers. Recall that A^* denotes the conjugate of the transpose of A. If $A^*A + B^*B = 0$, prove that A = B = 0.

(b) Let A and B be $n \times n$ positive definite Hermitian matrices over the complex numbers. Is it true that the eigenvalues of AB are strictly positive? Prove, or give a counterexample.