
Algebra Comprehensive Exam
Spring 2005

Instructions: Attempt any five questions, and please provide careful and complete answers. If you attempt
more questions, specify which five should be graded.

1. Let x and y be elements of a group G such that x has order 3, and y is not the identity and has odd
order. If xyx−1 = y5, determine the order of y.

Solution: Using xnyx−n = y5n

with n = 3, we get y = y125, so the order of y divides 124. Since the
order is an odd integer greater than 1, it must be 31.

2. Let p be an odd prime. If G is a group of order p(p + 1) and has more than one p-Sylow subgroup,
prove that p + 1 is a power of 2.

Solution: The number of p-Sylow subgroups is sp ≡ 1 mod p and divides |G|, so sp = p + 1. Let
P = 〈t〉 be a p-Sylow subgroup. Then sp = |G|/|N(P )| implies that |N(P )| = p, i.e., that N(P ) = P .

The p Sylow subgroups contain (p + 1)(p − 1) + 1 = p2 elements, leaving us with p other elements.
Since p + 1 is even, G must contain an element a of order 2. Consider the elements

a, tat−1, t2at−2, . . . . tp−1at−(p−1).

If two of these are equal, we can see that a and t commute, which contradicts N(P ) = P . Hence these
are all distinct, so we have p elements of order 2. Since all elements of G have order 1, 2, or p, it follows
that p + 1 must be a power of 2.

3. How many Sylow subgroups are there in a nonabelian group of order 39?

Solution: The number of p-Sylow subgroups is sp ≡ 1 mod p and divides the order of the group,
so we must have s13 = 1. The possibilities for s3 are 1 and 13, and the nonabelian condition forces
s3 = 13.

4. Let R ⊂ S be commutative integral domains such that every element of S is the root of a monic
polynomial with coefficients in R. Prove that R is a field if and only if S is a field.

Solution: Assume R is a field and take a nonzero element s ∈ S. Then there exist ri ∈ R such that

sn + r1s
n−1 + · · ·+ rn−1s + rn = 0,

where n is least possible. This forces rn 6= 0. But then

s(sn−1 + r1s
n−2 + · · ·+ rn−1) = −rn,

and multiplying by −r−1
n shows that s is invertible in S.

Conversely, assume S is a field and take a nonzero element r ∈ R. Then r−1 ∈ S, so there exist ri ∈ R
such that

r−n + r1r
−n+1 + · · ·+ rn−1r

−1 + rn = 0.

Multiplying by rn−1, we see that r−1 ∈ R.

5. Let x be a transcendental over a field F . If K is a subfield of F (x) properly containing F , prove that
x is algebraic over K.

Solution: Since K is larger than F , it contains a non-constant rational function f(x)/g(x) where
f(x), g(x) ∈ F [x]. Since K is a field, there is no loss of generality assuming that deg f(x) ≥ deg g(x).
But then x is algebraic over K since it is a root of the polynomial

f(T )− g(T )
f(x)
g(x)

∈ K[T ].
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6. Let A be a square matrix with integer entries and n be an integer. If each row of A has sum n, prove
that n divides the determinant of A.

Solution: The row-sum condition implies that (1, . . . , 1)T is an eigenvector of A with eigenvalue n,
so the characteristic polynomial has x − n as a factor. Hence n divides the constant term of the
characteristic polynomial, which is ±detA.

7. Determine all 5 × 5 Hermitian matrices A satisfying A5 + 2A3 + 3A = 6I, where I denotes the 5 × 5
identity matrix.

Solution: Since A is Hermitian, it has real eigenvalues. The only real root of x5 + 2x3 + 3x− 6 = 0
is 1, so all eigenvalues of A must be 1. Being diagonalizable, A is similar to the identity matrix, and
hence must be the identity matrix.

8. If A is a real symmetric matrix, prove that I + εA is positive definite for sufficiently small real numbers
ε > 0. (I denotes the identity matrix.)

Solution: The matrix A is diagonalizable, so let A = MDM−1 where D is a diagonal matrix. Then
I + εA = M(I + εD)M−1, so it suffices to show that I + εD is positive definite for small ε > 0. Let
d1, . . . , dn be the eigenvalues of D. Then I + εD has positive eigenvalues as long as 1 + εdi > 0 for all
i.
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