Algebra Comprehensive Exam Spring 2005

Instructions: Attempt any five questions, and please provide careful and complete answers. If you attempt more questions, specify which five should be graded.

1. Let x and y be elements of a group G such that x has order 3 , and y is not the identity and has odd order. If $x y x^{-1}=y^{5}$, determine the order of y.
Solution: Using $x^{n} y x^{-n}=y^{5^{n}}$ with $n=3$, we get $y=y^{125}$, so the order of y divides 124 . Since the order is an odd integer greater than 1, it must be 31.
2. Let p be an odd prime. If G is a group of order $p(p+1)$ and has more than one p-Sylow subgroup, prove that $p+1$ is a power of 2 .
Solution: The number of p-Sylow subgroups is $s_{p} \equiv 1 \bmod p$ and divides $|G|$, so $s_{p}=p+1$. Let $P=\langle t\rangle$ be a p-Sylow subgroup. Then $s_{p}=|G| /|N(P)|$ implies that $|N(P)|=p$, i.e., that $N(P)=P$.
The p Sylow subgroups contain $(p+1)(p-1)+1=p^{2}$ elements, leaving us with p other elements. Since $p+1$ is even, G must contain an element a of order 2. Consider the elements

$$
a, t a t^{-1}, t^{2} a t^{-2}, \ldots t^{p-1} a t^{-(p-1)}
$$

If two of these are equal, we can see that a and t commute, which contradicts $N(P)=P$. Hence these are all distinct, so we have p elements of order 2 . Since all elements of G have order 1,2 , or p, it follows that $p+1$ must be a power of 2 .
3. How many Sylow subgroups are there in a nonabelian group of order 39 ?

Solution: The number of p-Sylow subgroups is $s_{p} \equiv 1 \bmod p$ and divides the order of the group, so we must have $s_{13}=1$. The possibilities for s_{3} are 1 and 13 , and the nonabelian condition forces $s_{3}=13$.
4. Let $R \subset S$ be commutative integral domains such that every element of S is the root of a monic polynomial with coefficients in R. Prove that R is a field if and only if S is a field.
Solution: Assume R is a field and take a nonzero element $s \in S$. Then there exist $r_{i} \in R$ such that

$$
s^{n}+r_{1} s^{n-1}+\cdots+r_{n-1} s+r_{n}=0
$$

where n is least possible. This forces $r_{n} \neq 0$. But then

$$
s\left(s^{n-1}+r_{1} s^{n-2}+\cdots+r_{n-1}\right)=-r_{n}
$$

and multiplying by $-r_{n}^{-1}$ shows that s is invertible in S.
Conversely, assume S is a field and take a nonzero element $r \in R$. Then $r^{-1} \in S$, so there exist $r_{i} \in R$ such that

$$
r^{-n}+r_{1} r^{-n+1}+\cdots+r_{n-1} r^{-1}+r_{n}=0
$$

Multiplying by r^{n-1}, we see that $r^{-1} \in R$.
5. Let x be a transcendental over a field F. If K is a subfield of $F(x)$ properly containing F, prove that x is algebraic over K.
Solution: Since K is larger than F, it contains a non-constant rational function $f(x) / g(x)$ where $f(x), g(x) \in F[x]$. Since K is a field, there is no loss of generality assuming that $\operatorname{deg} f(x) \geq \operatorname{deg} g(x)$. But then x is algebraic over K since it is a root of the polynomial

$$
f(T)-g(T) \frac{f(x)}{g(x)} \in K[T] .
$$

6. Let A be a square matrix with integer entries and n be an integer. If each row of A has sum n, prove that n divides the determinant of A.
Solution: The row-sum condition implies that $(1, \ldots, 1)^{T}$ is an eigenvector of A with eigenvalue n, so the characteristic polynomial has $x-n$ as a factor. Hence n divides the constant term of the characteristic polynomial, which is $\pm \operatorname{det} A$.
7. Determine all 5×5 Hermitian matrices A satisfying $A^{5}+2 A^{3}+3 A=6 I$, where I denotes the 5×5 identity matrix.
Solution: Since A is Hermitian, it has real eigenvalues. The only real root of $x^{5}+2 x^{3}+3 x-6=0$ is 1 , so all eigenvalues of A must be 1 . Being diagonalizable, A is similar to the identity matrix, and hence must be the identity matrix.
8. If A is a real symmetric matrix, prove that $I+\epsilon A$ is positive definite for sufficiently small real numbers $\epsilon>0$. (I denotes the identity matrix.)
Solution: The matrix A is diagonalizable, so let $A=M D M^{-1}$ where D is a diagonal matrix. Then $I+\epsilon A=M(I+\epsilon D) M^{-1}$, so it suffices to show that $I+\epsilon D$ is positive definite for small $\epsilon>0$. Let d_{1}, \ldots, d_{n} be the eigenvalues of D. Then $I+\epsilon D$ has positive eigenvalues as long as $1+\epsilon d_{i}>0$ for all i.
