FUNCTIONAL ANALYSIS Spring 2003 SOLUTIONS TO SOME PROBLEMS

Warning: These solutions may contain errors!!

PREPARED BY SULEYMAN ULUSOY

PROBLEM 1. Prove that a necessary and sufficient condition that the metric space (X, d) be complete is that every nested sequence of nonempty closed sets $(F_i)_{i=1}^{\infty}$ with diameters tending to 0, has a nonempty intersection:

$$\bigcap_{i=1}^{\infty} F_i \neq \emptyset$$

SOLUTION.

(\Longrightarrow :) Suppose first that (X, d) is complete. We shall show that the above condition is satisfied under this assumption. Suppose that (F_i) (i=1,2,...) is a nested sequence of nonempty closed sets such that $diam(F_i) := \sup_{a,b,\in F_i} d(a,b) \to 0$. By selecting a point $x_n \in F_n$ for each n = 1, 2, ..., we can generate a sequence (x_n) . This sequence must be Cauchy sequence, because, assuming m > n, we have $d(x_m, x_n) \leq diam(F_n)$, which tends to). Since (X, d) is complete, (x_n) must have a limit x. Now, for any given m, we have a sequence of points $\{x_m, x_{m+1}, ...\} \subset F_n$. By this we have, $x \in closure(F_n) = F_n, \forall n$. Hence, $x \in \bigcap_{i=1}^{\infty} F_i$.

(: \Leftarrow) Conversely, suppose that the given condition is satisfied and let (x_n) be a Cauchy sequence. Letting $H_n = \{x_n, x_{n+1}, \ldots\}$, we can say that, since (x_n) is a Cauchy sequence, $diam(H_n) \rightarrow 0$. It is also true that $diam(closure(H_n)) \rightarrow 0$. Further, since

$$H_{n+1} \subset H_n \Rightarrow closure(H_{n+1}) \subset closure(H_n),$$

we see that $(closure(H_n))$ is a closed, nested sequence of nonempty sets in X, whose diameters tend to 0. By the hypothesis, we can conclude the existence of an x such that

$$x \in \bigcap_{i=1}^{\infty} closure(H_n).$$

Therefore, since $d(x_n, x) \leq diam(closure(H_n)) \to 0$, we see that $x_n \to x$.

PROBLEM 2. Let f be acontinuous function such that $f : X \to Y$ where X and Y are metric spaces. Suppose A is a compact subset of X, prove that f(A) is a compact subset of Y.

SOLUTION. Let (G_{α}) be a collection of open sets in Y such that

$$f(A) \subset \bigcup_{\alpha} G_{\alpha}.$$

Now we have,

$$A \subset f^{-1}(f(A)) \subset f^{-1}(\bigcup_{\alpha} G_{\alpha}) = \bigcup_{\alpha} f^{-1}(G_{\alpha}).$$

Since f is continuous each of the $f^{-1}(G_{\alpha})$ are open sets. Thus, the family $(f^{-1}(G_{\alpha})$ is an open covering for A. But by assumption A is compact, so there exist $G_1, G_2, ..., G_n$ such that

$$A \subset \bigcup_{i=1^n} f^{-1}(G_i),$$

which implies

$$f(A) \subset \bigcup_{i=1}^{n} f(f^{-1}(G_i)) \subset \bigcup_{i=1}^{n} G_i.$$

We have succeeded in selecting a finite subcovering from the original open covering for f(A), and that shows f(A) is compact.

PROBLEM 3. We know that if (X, d) is a metric space. Then $A \subset X$ is compact only if A is closed and bounded. In \mathbb{R}^n we know that the converse is also true which is precisely the statement of the Heine-Borel Theorem. Give a counterexample to show that the converse is not necessarily true if we have an arbitrary metric space.

SOLUTION. Suppose X is any infinite set and the trivial metric d is assigned to it. For $\epsilon < \frac{1}{2}$ we have

$$S_{\epsilon}(x) = \{x\} \subset \{x\}$$

from which we conclude that even one-point sets in this metric space are open sets. X is itself bounded set as the distance between any two points is at most 1 and even this space is complete(exercise!). Since X is the whole space X is also closed. Now if we consider the following open covering of X,

$$X \subset \bigcup_{x \in X} \{x\}.$$

It is clear that no finite subcovering can be chosen from this covering, so X is not compact though it is closed and bounded.

PROBLEM 4. For each n let $f_n : R \to R$ be a differentiable function. Suppose also that for each n and x we have $|f'_n| \leq 1$. Show that if for all $x \lim_{n\to\infty} f_n(x) = g(x)$ then $g: R \to R$ is a continuous function.

SOLUTION. Fix $\epsilon > 0$. For real numbers a < b, we can choose n so large that $|f_n(a) - g(a)| < \epsilon$ and $|f_n(b) - g(b)| < \epsilon$. Then by the Mean Value Theorem, for $a < \xi < b$, we have the following estimate:

$$|g(a) - g(b)| \le |g(a) - f_n(a)| + |f_n(a) - f_n(b)| + |f_n(b) - g(b)| < 2\epsilon + |f'_n(\xi)||b - a|.$$

Since $\epsilon > 0$ is arbitrary, the above estimate implies, $|g(a) - g(b)| \le |b - a|$ and this shows that g is continuous.

PROBLEM 5. Let $f_n: [0,1] \to [0,\infty)$ be continuous for $n = 1, 2, \dots$ Suppose

$$(*)f_1(x) \ge f_2(x) \ge f_3 \ge \dots$$

for $x \in [0, 1]$ and let $f(x) = \lim_{n \to \infty} f_n(x), M = \sup_{x \in [0, 1]} f(x).$

a.)Show that there exists $t \in [0, 1]$ such that f(t) = M.

b.)Does the conclusion remain valid if we replace the condition (*) by the following condition? Suppose there exists n_x such that $f_n(x) \ge f_{n+1}(x)$ for all $x \in [0, 1]$ and $n > n_x$.

SOLUTION.

a.) For $\epsilon > 0$, define $S_{\epsilon} = \{x \in [0,1] : f(x) \ge M - \epsilon\}$. To have $f(x) \ge M - \epsilon$ the necessary and sufficient condition is to have $f_n(x) \ge M - \epsilon$ for all n. Hence we have $S_{\epsilon} = \bigcap_{n\ge 1} f_n^{-1}([m-\epsilon,\infty))$. Note that S_{ϵ} is nonempty and closet set for any ϵ . For finite number of positive numbers $\epsilon_i, \bigcap_i S_{\epsilon_i} = S_{\min\epsilon_i} \neq \emptyset$. Since [0,1] is compact $\bigcap_{\epsilon} S_{\epsilon} \neq \emptyset$. Suppose $t \in \bigcap_{\epsilon} S_{\epsilon}$. Then we have, $M - \epsilon \le f(t) \le M$. Since $\epsilon > 0$ is arbitrary, f(t) = M. b.) The conclusion does not remain valid if the condition (*) is replaced by Suppose there exists n_x such that $f_n(x) \ge f_{n+1}(x)$ for all $x \in [0,1]$ and $n > n_x$. For a counter example consider $f_n(x) = \min\{nx, 1-x\}$.

PROBLEM 6. Let (f_n) be a nondecreasing sequence of functions from [0, 1] to [0, 1]. Suppose $\lim_{n\to\infty} f_n(x) = f(x)$ and suppose also that f is continuous. Prove that $f_n \to f$ uniformly.

SOLUTION. Since [0, 1] is compact and f is continuous on [0, 1], f is uniformly continuous. Fix $\epsilon > 0$. Then there is a $\delta > 0$ such that, whenever $|x - y| < \delta$ we have $|f(x) - f(y)| < \epsilon$. Choose a natural number N such that $\frac{1}{N} < \delta$. Then for $0 \le k \le N$ let $\xi_k = \frac{k}{N}$ and divide [0, 1] into subintervals of the form $[\xi_{k-1}, \xi_k]$. Since, $f_n(x) \to f$ pointwise, we can find M > 0, by taking maximum over the finite (ξ_k) , so that $|f_n(\xi_k) - f(\xi_k)| < \epsilon$ whenever $n \ge M$. Since (f_n) is a nondecreasing sequence of functions for $x \in [\xi_{k-1}, \xi_k]$ we have,

$$f(\xi_{k-1}) - \epsilon < f_n(x) < f(\xi_{k-1}) + 2\epsilon$$

which is equivalent to $|f_n(x) - f(\xi_{k-1})| < 2\epsilon$. Thus, we have the following estimate,

$$|f_n(x) - f(x)| \le |f_n(x) - f(\xi_{k-1})| + |f(\xi_{k-1}) - f(x)| < 3\epsilon.$$

Since the above inequality does not depend on the particular point, we have the uniform convergence of f_n to f.

PROBLEM 7. Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ satisfies following properties.

(i) For all compact subsets K of \mathbb{R}^n , f(K) is also compact.

(ii) For decreasing sequence (K_n) of compact subsets of \mathbb{R}^n one has $f(\cap_n K_n) = \cap_n f(K_n)$. Show that f is a continuous function on \mathbb{R}^n .

SOLUTION. Pick $\epsilon > 0$ and $x \in \mathbb{R}^n$. Let *B* be an open ball of radius ϵ and centered at f(x) and for all n let K_n be the closed ball of radius $\frac{1}{n}$ centered at *x*. By (*ii*) we have $\bigcap_{n=1}^{\infty} f(K_n) = \{f(x)\}$. For all n = 1, 2, ..., the sets $(\mathbb{R}^n - B) \cap f(K_n)$ are compact and these sets form a decreasing sequence. By the previous equality their intersection is the empty set. Hence, there exists an n_0 so that $(\mathbb{R}^n - B) \cap f(K_{n_0}) = \emptyset$. From this we get, when $|y - x| < \frac{1}{n_0}$ then $|f(y) - f(x)| < \epsilon$. And this shows that f is continuous at x. Since x was arbitrary, f is continuous on \mathbb{R}^n .

PROBLEM 8. Suppose X, Y are metric spaces and $f : X \to Y$ is a continuous function. For all n let K_n be nonempty compact sets such that $K_{n+1} \subset K_n$ and let $K = \cap K_n$. Show that $f(K) = \cap f(K_n)$.

SOLUTION. Since $f(K) \subset f(K_n)$ for all n, we have $f(K) \subset \cap f(K_n)$. Now, let $y \in \cap f(K_n)$. Then, $f^{-1}(\{y\}) \cap K_n$ is non-empty and compact. Also, since for any n,

$$f^{-1}(\{y\}) \cap K_{n+1} \subset f^{-1}(\{y\}) \cap K_n$$

the set

$$\bigcap_{n=1}^{\infty} (f^{-1}(\{y\}) \cap K_n) = f^{-1}(\{y\}) \cap K$$

is non-empty, so $y \in f(K)$.

PROBLEM 9.Show that every orthonormal sequence in an infinite-dimensional Hilbert space converges weakly to 0.

SOLUTION. Let (x_j) be an orthonormal sequence in a Hilbert space H. We need to show that $f(x_j) \to 0$ for all $f \in H^*$. By Riesz representation theorem that is same as showing $\langle x_j, y \rangle \to 0$ for all $y \in H$. This follows from the Bessel's inequality

$$\sum_{j} | \langle x_j, y \rangle |^2 \le ||y||^2 < \infty.$$

PROBLEM 10. Let X be a topological space, Y a Hausdorff space, and f, g continuous functions from X to Y.

- a.) Show that $\{x : f(x) = g(x)\}$ is closed.
- b.) Show that if f = g on a dense subset of X, then f = g on all of X.

SOLUTION.

a.) We show that $\{x : f(x) \neq g(x)\}$ is open. Pick any x with $f(x) \neq g(x)$. Since Y is Hausdorff, we can find disjoint open sets U, V with $f(x) \in U$ and $g(x) \in V$. By continuity, $f^{-1}(U)$ and $g^{-1}(V)$ are open sets in X and both contain x, so $O = f^{-1}(U) \cap g^{-1}(V)$ is an open set around x. For any $y \in O$, $f(y) \in U$ and $g(y) \in V$ so $f(y) \neq g(y)$.

b.) The set where f = g is closed. If f = g on any set A, then f = g on closure of A, since the closure of A is the smallest closed set which contains A. "Dense" means that the closure is all of X.

PROBLEM 11. Suppose (f_n) is a sequence of continuous functions such that $f_n : [0,1] \to R$ and as $n, m \to \infty$,

$$\int_0^1 (f_n(x) - f_m(x))^2 dx \to 0.$$

Suppose also that $K: [0,1] \times [0,1] \to R$ is continuous. Define $g_n: [0,1] \to R$ by

$$g_n = \int_0^1 K(x, y) f_n(y) dy.$$

Show that (g_n) is uniformly convergent sequence.

SOLUTION. First, let us show that the sequence (g_n) is cauchy in the supremum norm.

$$|g_n(x) - g_m(x)| \le \int_0^1 |K(x, y)| |f_n(y) - f_m(y)| dy$$

$$\le \left(\int_0^1 |K(x, y)|^2 dy\right)^{\frac{1}{2}} \left(\int_0^1 |f_n(y) - f_m(y)|^2 dy\right)^{\frac{1}{2}}$$

implies that

$$\sup_{x \in [0,1]} |g_n(x) - g_m(x)| \le \sup_{x \in [0,1]} \Big(\int_0^1 |K(x,y)|^2 dy \Big)^{\frac{1}{2}} \Big(\int_0^1 |f_n(y) - f_m(y)|^2 dy \Big)^{\frac{1}{2}}.$$

Since K is continuous it is integrable and $M = \sup_{x,y \in [0,1]} |K(x,y)|$ exists and this gives,

$$||g_n(x) - g_m(x)||_{\infty} \le M \Big(\int_0^1 |f_n(x) - f_m(x)|^2 dy \Big)^{\frac{1}{2}} \to 0$$

so, (g_n) is a Cauchy sequence in the supremum norm.But, we know that C[0,1] is complete under this norm, so the sequence (g_n) converges under this norm which is equivalent to converging uniformly.

PROBLEM 12. Let C denote the space of all bounded continuous functions on the real line R equipped with the supremum norm. Let S be the subspace of C consisting of functions f such that

$$\lim_{n \to \infty} f(x)$$

exists.

a.) Is S a closed linear subspace of C?

b.) Show that there is a bounded linear functional L on C so that

$$L(f) = \lim_{x \to \infty} f(x)$$

for all $f \in S$.

c.) Is there a bounded Borel measure μ so that $L(f) = \int_{R} f d\mu$ for all $f \in C$?

SOLUTION.

a.) Given $\epsilon > 0$, $\sup_{t \in \mathbb{R}} |f_n(t) - f(t)| = ||f_n - f||_{\infty} < \epsilon/3$ we need to decide whether or not $f \in S$.

Claim: $f \in S$ i.e. $\lim_{n\to\infty} f(x)$ exists. Suppose not, then for all $\delta > 0$, there is an $\epsilon_0 > 0$ such that $|x - y| < \delta$ but $|f(x) - f(y)| \ge \epsilon_0$. Now, we are given $||f_n - f||_{\infty} < \epsilon/3 \Leftrightarrow \sup_{t\in R} |f_n(t) - f(t)| < \epsilon/3$. But then we have $|f_n(x) - f(x)| < \epsilon/3$ and $|f_n(y) - f(y)| < \epsilon/3$. This yields,

$$|f(x) - f(y)| < |f(x) - f_n(x)| + |f_n(y) - f(y)| + |f_n(x) - f_n(y)| < \epsilon_0/3 + \epsilon_0/3 + \epsilon_0/3$$

 $\Rightarrow |f(x) - f(y)| < \epsilon_0$, which gives us a contradiction. Thus, S is a closed linear subspace. b.) We will use Hahn-Banach Theorem to show the existence of L on C. For this, we need to find a sublinear functional p on C such that $\rho_0(f) \le p(f)$ for all $f \in S$. Define,

$$p(f) = \begin{cases} \lim_{x \to \infty} f(x) & \text{if } f \in S \\ 0 & \text{otherwise} \end{cases}$$

then, $p(f+g) = \lim_{x\to\infty} (f+g) = p(f) + p(g)$ if $f, g \in S$. and p(f+g) = 0 = p(f) + p(g) if $f, g \notin S$. Also, $p(af) = a \lim_{x\to\infty} f(x) = ap(f)$ if $f \in S$ and p(af) = 0 = ap(f) if $f \notin S$.

So, p is indeed a sublinear functional on C such that $\rho_0(f) = \lim_{x\to\infty} f(x) \le p(f)$ for all $f \in S$. Therefore, by the Hahn Banach Theorem, there is a linear functional L on C such that $L(f) \le p(y)$ for all $f \in C$ and $L(f) = \rho_0(f) = \lim_{x\to\infty} f(x)$ if $f \in S$.

c.) We claim that there is no such Borel measure. Let us suppose there is one. Then on the left hand side we will have $\lim_{x\to\infty} f(x)$ which is translation invariant *i.e.* $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f(x+a)$ for all $a \in R$. But, the only measure which is translation invariant is the Lebesgue measure, which is not bounded. So, there is no such bounded Borel measure.

PROBLEM 13. Let X be a normed linear space. Show that if S is an open subspace of X, then S = X.

SOLUTION. Let S be an open subspace of X. Since S is open and $0 \in S$, there exists r > 0 such that $B(0,r) \subset S$. Let $x \in X$. Fix any $R > \frac{1}{r}||x||$, and set $y = \frac{1}{R}x$. Then, $||y|| = \frac{1}{R}||x|| < r$, so $y \in B(0,r) \subset S$. Since S is closed under scalar multiplication, we conclude that $x = Ry \in S$. Thus, we have shown $X \subseteq S$ and the other inclusion is clear so that we have X = S.

PROBLEM 14. Suppose that A and K are closed subsets of an additive topological group G, prove that if K is compact then A + K is closed.

SOLUTION. Let $p \in \overline{A+K}$. For each neighborhood U of p, let $K_U = \{k : k \in K, k \in U - A\}$. Since $p \in \overline{A+K}$, each K_U is non-empty. It is clear that if $U_1 \subseteq U_2$, then $K_{U_1} \subseteq K_{U_2}$. It follows that the closed sets $\overline{K_U}$ have the finite intersection property. So their intersection is non-empty. Now let $k_0 \in K = \cap \overline{K_U}$. Thus, if N is any neighborhood of the identity,

$$(N+k_0) \cap (N+p-A) \neq \emptyset.$$

This means that $(N - N + k_0) \cap (p - A) \neq \emptyset$. If M is any neighborhood of the identity, there is a neighborhood N of the identity such that $N - N \subseteq M$. Thus, any neighborhood of k_0 intersects p - A. Since A is closed, p - A, and thus $p \in A + k_0 \subseteq a + K$.

PROBLEM 15. Let X and Y be normed vector spaces, and let $L : X \to Y$ be linear and bounded.

a.) Show that $N(L) = \{x \in X : L(x) = 0\}$ is a closed subspace of X.

b.) Now let X = C, the set of complex numbers. Shiw that $R(L) = \{L(x) : x \in C\}$ is a closed subspace of Y. Hint: Every vector in C is a scalr multiple of 1.

SOLUTION.

a.) Let $x, y \in N(L)$ and $a, b \in F$, then L(ax+by) = aL(x)+bL(y) = 0, so $ax+by \in N(L)$. Thus, N(L) is a subspace.

Suppose that x is a limit point of N(L). Then there exists $x_n \in N(L)$ such that $x_n \to x$. But L is continuous, so $0 = L(x_n) = L(x)$, so $x \in N(L)$.

b.) If p = L(x), $q = L(y) \in R(L)$ and $a, b \in F$, then $ap + bq = aL(x) + bL(y) = L(ax + by) \in R(L)$. Thus, R(L) is a subspace.

Suppose that y is a limit point of Y. Then, there exists $y_n = L(x_n) \in R(L)$ such that $y_n \to y$. We have $x_n \in C$ and L is linear, so $L(x_n) = x_n L(1)$. If L(1) = 0 then $R(L) = \{0\}$ and we are done. If $L(1) \neq 0$, then

$$||y_n - y_m|| = ||L(x_n) - L(x_m)|| = ||(x_n - x_m)L(1)|| = |x_n - x_m| \cdot ||L(1)||.$$

Since ||L(1)|| is a fixed constant and $\{y_n\}$ is a Cauchy sequence in Y, we conclude that $\{x_n\}$ is a Cauchy sequence of scalars in C, and since L is continuous, this implies $y_n = L(x_n) \to L(x)$. Since limits are unique, we have $y = L(x) \in R(L)$.

PROBLEM 16. Define $L : l^2 \to l^2$ by $L(x_1, x_2, ...) = (x_2, x_3, ...)$. Prove that L is bounded and find ||L||. Is L injective?

SOLUTION. Let $x = (x_1, x_2, ...) \in l^2$, then

$$||L(x)||_{2}^{2} = \sum_{k=2}^{\infty} |x_{k}|^{2} \le \sum_{k=1}^{\infty} |x_{k}|^{2} = ||x||_{2}^{2}.$$

Hence, L is bounded, and

$$||L|| = \sup_{||x||_2=1} ||L(x)||_2 \le \sup_{||x||_2=1} ||x||_2 = 1.$$

On the other hand, since e = (0, 1, 0, ...) and L(e) = (1, 0, 0, ...) are both unit vectors, we have $||L|| \ge 1$. Therefore, ||L|| = 1. L is not injective since L(1, 0, 0, ...) = L(0, 0, 0, ...).

PROBLEM 17. Let X be a normed space, and suppose that $x_n \to x \in X$. Show that there exists a subsequence (x_{nk}) such that

$$\sum_{k=1}^{\infty} ||x - x_{nk}|| < \infty.$$

SOLUTION. We are given that $||x - x_n|| \to 0$. There exists, N_1 such that $||x - x_n|| < \frac{1}{2}$ for $n \ge N_1$. Let $n_1 = N_1$. There exists an N_2 such that $||x - x_n|| < \frac{1}{2^2}$ for $n \ge N_2$. Choose any $n_2 > n_1, N_2$. There exists an N_3 such that $||x - x_n|| < \frac{1}{2^3}$ for $n \ge N_3$. Choose any $n_3 > n_2, N_3$. Continuing in this fashion, we obtain $n_1 < n_2 < n_3 < \dots$ in such a way that

$$\sum_{k=1}^{\infty} ||x - x_k|| \le \sum_{k=1}^{\infty} \frac{1}{2^k} < \infty.$$