FUNCTIONAL ANALYSIS Spring 2003 SOLUTIONS TO SOME PROBLEMS

Warning:These solutions may contain errors!!

PREPARED BY SULEYMAN ULUSOY

PROBLEM 1. Prove that a necessary and sufficient condition that the metric space (X, d) be complete is that every nested sequence of nonempty closed sets $\left(F_{i}\right)_{i=1}^{\infty}$ with diameters tending to 0 , has a nonempty intersection:

$$
\bigcap_{i=1}^{\infty} F_{i} \neq \emptyset .
$$

SOLUTION.

$(\Longrightarrow$:) Suppose first that (X, d) is complete. We shall show that the above condition is satisfied under this assumption. Suppose that $\left(F_{i}\right)(\mathrm{i}=1,2, \ldots)$ is a nested sequence of nonempty closed sets such that $\operatorname{diam}\left(F_{i}\right):=\sup _{a, b, \in F_{i}} d(a, b) \rightarrow 0$. By selecting a point $x_{n} \in F_{n}$ for each $n=1,2, \ldots$, we can generate a sequence $\left(x_{n}\right)$. This sequence must be Cauchy sequence, because, assuming $m>n$, we have $d\left(x_{m}, x_{n}\right) \leq \operatorname{diam}\left(F_{n}\right)$, which tends to $)$. Since (X, d) is complete, $\left(x_{n}\right)$ must have a limit x . Now, for any given m , we have a sequence of points $\left\{x_{m}, x_{m+1}, \ldots\right\} \subset F_{n}$. By this we have, $x \in \operatorname{closure}\left(F_{n}\right)=F_{n}, \forall n$. Hence, $x \in \bigcap_{i=1}^{\infty} F_{i}$.
$(: \Longleftarrow)$ Conversely, suppose that the given condition is satisfied and let $\left(x_{n}\right)$ be a Cauchy sequence. Letting $H_{n}=\left\{x_{n}, x_{n+1}, \ldots\right\}$, we can say that, since $\left(x_{n}\right)$ is a Cauchy sequence, $\operatorname{diam}\left(H_{n}\right) \rightarrow 0$. It is also true that $\operatorname{diam}\left(\operatorname{closure}\left(H_{n}\right)\right) \rightarrow 0$. Further, since

$$
H_{n+1} \subset H_{n} \Rightarrow \operatorname{closure}\left(H_{n+1}\right) \subset \operatorname{closure}\left(H_{n}\right),
$$

we see that $\left(\operatorname{closure}\left(H_{n}\right)\right)$ is a closed, nested sequence of nonempty sets in X, whose diameters tend to 0 . By the hypothesis, we can conclude the existence of an x such that

$$
x \in \bigcap_{i=1}^{\infty} \operatorname{closure}\left(H_{n}\right) .
$$

Therefore, since $d\left(x_{n}, x\right) \leq \operatorname{diam}\left(\operatorname{closure}\left(H_{n}\right)\right) \rightarrow 0$, we see that $x_{n} \rightarrow x$.
PROBLEM 2. Let f be acontinuous function such that $f: X \rightarrow Y$ where X and Y are metric spaces. Suppose A is a compact subset of X, prove that $f(A)$ is a compact subset of Y.

SOLUTION. Let $\left(G_{\alpha}\right)$ be a collection of open sets in Y such that

$$
f(A) \subset \bigcup_{\alpha} G_{\alpha}
$$

Now we have,

$$
A \subset f^{-1}(f(A)) \subset f^{-1}\left(\bigcup_{\alpha} G_{\alpha}\right)=\bigcup_{\alpha} f^{-1}\left(G_{\alpha}\right) .
$$

Since f is continuous each of the $f^{-1}\left(G_{\alpha}\right)$ are open sets. Thus, the family $\left(f^{-1}\left(G_{\alpha}\right)\right.$ is an open covering for A. But by assumption A is compact, so there exist $G_{1}, G_{2}, \ldots, G_{n}$ such that

$$
A \subset \bigcup_{i=1^{n}} f^{-1}\left(G_{i}\right)
$$

which implies

$$
f(A) \subset \bigcup_{i=1}^{n} f\left(f^{-1}\left(G_{i}\right)\right) \subset \bigcup_{i=1}^{n} G_{i} .
$$

We have succeeded in selecting a finite subcovering from the original open covering for $f(A)$, and that shows $f(A)$ is compact.

PROBLEM 3. We know that if (X, d) is a metric space. Then $A \subset X$ is compact only if A is closed and bounded. In R^{n} we know that the converse is also true which is precisely the statement of the Heine-Borel Theorem. Give a counterexample to show that the converse is not necessarily true if we have an arbitrary metric space.

SOLUTION. Suppose X is any infinite set and the trivial metric d is assigned to it. For $\epsilon<\frac{1}{2}$ we have

$$
S_{\epsilon}(x)=\{x\} \subset\{x\}
$$

from which we conclude that even one-point sets in this metric space are open sets. X is itself bounded set as the distance between any two points is at most 1 and even this space is complete(exercise!). Since X is the whole space X is also closed. Now if we consider the following open covering of X,

$$
X \subset \bigcup_{x \in X}\{x\}
$$

It is clear that no finite subcovering can be chosen from this covering, so X is not compact though it is closed and bounded.

PROBLEM 4. For each n let $f_{n}: R \rightarrow R$ be a differentiable function. Suppose also that for each n and x we have $\left|f_{n}^{\prime}\right| \leq 1$. Show that if for all $x \lim _{n \rightarrow \infty} f_{n}(x)=g(x)$ then $g: R \rightarrow R$ is a continuous function.

SOLUTION. Fix $\epsilon>0$. For real numbers $a<b$, we can choose n so large that $\left|f_{n}(a)-g(a)\right|<\epsilon$ and $\left|f_{n}(b)-g(b)\right|<\epsilon$. Then by the Mean Value Theorem, for $a<\xi<b$, we have the following estimate:

$$
|g(a)-g(b)| \leq\left|g(a)-f_{n}(a)\right|+\left|f_{n}(a)-f_{n}(b)\right|+\left|f_{n}(b)-g(b)\right|<2 \epsilon+\left|f_{n}^{\prime}(\xi)\right||b-a| .
$$

Since $\epsilon>0$ is arbitrary, the above estimate implies, $|g(a)-g(b)| \leq|b-a|$ and this shows that g is continuous.

PROBLEM 5. Let $f_{n}:[0,1] \rightarrow[0, \infty)$ be continuous for $n=1,2, \ldots$ Suppose

$$
(*) f_{1}(x) \geq f_{2}(x) \geq f_{3} \geq \ldots
$$

for $x \in[0,1]$ and let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x), M=\sup _{x \in[0,1]} f(x)$.
a.) Show that there exists $t \in[0,1]$ such that $f(t)=M$.
b.) Does the conclusion remain valid if we replace the condition $(*)$ by the follwing condition? Suppose there exists n_{x} such that $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in[0,1]$ and $n>n_{x}$.

SOLUTION.

a.) For $\epsilon>0$, define $S_{\epsilon}=\{x \in[0,1]: f(x) \geq M-\epsilon\}$. To have $f(x) \geq M-\epsilon$ the necessary and sufficient condition is to have $f_{n}(x) \geq M-\epsilon$ for all n. Hence we have $S_{\epsilon}=\bigcap_{n \geq 1} f_{n}^{-1}([m-\epsilon, \infty))$. Note that S_{ϵ} is nonempty and closet set for any ϵ. For finite number of positive numbers $\epsilon_{i}, \bigcap_{i} S_{\epsilon_{i}}=S_{\text {min }_{i}} \neq \emptyset$. Since $[0,1]$ is compact $\bigcap_{\epsilon} S_{\epsilon} \neq \emptyset$. Suppose $t \in \bigcap_{\epsilon} S_{\epsilon}$. Then we have, $M-\epsilon \leq f(t) \leq M$. Since $\epsilon>0$ is arbitrary, $f(t)=M$. b.) The conclusion does not remain valid if the condition $(*)$ is replaced by Suppose there exists n_{x} such that $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in[0,1]$ and $n>n_{x}$. For a counter example consider $f_{n}(x)=\min \{n x, 1-x\}$.

PROBLEM 6. Let $\left(f_{n}\right)$ be a nondecreasing sequence of functions from $[0,1]$ to $[0,1]$. Suppose $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and suppose also that f is continuous. Prove that $f_{n} \rightarrow f$ uniformly.

SOLUTION. Since $[0,1]$ is compact and f is continuous on $[0,1], f$ is uniformly continuous. Fix $\epsilon>0$. Then there is a $\delta>0$ such that, whenever $|x-y|<\delta$ we have $|f(x)-f(y)|<\epsilon$. Choose a natural number N such that $\frac{1}{N}<\delta$. Then for $0 \leq k \leq N$ let $\xi_{k}=\frac{k}{N}$ and divide [0,1] into subintervals of the form $\left[\xi_{k-1}, \xi_{k}\right]$. Since, $f_{n}(x) \rightarrow f$ pointwise, we can find $M>0$, by taking maximum over the finite $\left(\xi_{k}\right)$, so that $\left|f_{n}\left(\xi_{k}\right)-f\left(\xi_{k}\right)\right|<\epsilon$ whenever $n \geq M$. Since $\left(f_{n}\right)$ is a nondecreasing sequence of functions for $x \in\left[\xi_{k-1}, \xi_{k}\right]$ we have,

$$
f\left(\xi_{k-1}\right)-\epsilon<f_{n}(x)<f\left(\xi_{k-1}\right)+2 \epsilon
$$

which is equivalent to $\left|f_{n}(x)-f\left(\xi_{k-1}\right)\right|<2 \epsilon$. Thus, we have the following estimate,

$$
\left|f_{n}(x)-f(x)\right| \leq \mid f_{n}(x)-f\left(\xi _ { k - 1 } \left|+\left|f\left(\xi_{k-1}\right)-f(x)\right|<3 \epsilon\right.\right.
$$

Since the above inequality does not depend on the particular point, we have the uniform convergence of f_{n} to f.
PROBLEM 7. Suppose $f: R^{n} \rightarrow R^{m}$ satisfies following properties.
(i) For all compact subsets K of $R^{n}, f(K)$ is also compact.
(ii) For decreasing sequence (K_{n}) of compact subsets of R^{n} one has $f\left(\cap_{n} K_{n}\right)=\cap_{n} f\left(K_{n}\right)$.

Show that f is a continuous function on R^{n}.
SOLUTION. Pick $\epsilon>0$ and $x \in R^{n}$. Let B be an open ball of radius ϵ and centered at $f(x)$ and for all n let K_{n} be the closed ball of radius $\frac{1}{n}$ centered at x. By (ii) we have $\cap_{n=1}^{\infty} f\left(K_{n}\right)=\{f(x)\}$. For all $n=1,2, \ldots$, the sets $\left(R^{n}-B\right) \cap f\left(K_{n}\right)$ are compact and these sets form a decreasing sequence. By the previous equality their intersection is the empty set. Hence, there exists an n_{0} so that $\left(R^{n}-B\right) \cap f\left(K_{n_{0}}\right)=\emptyset$. From this we get, when $|y-x|<\frac{1}{n_{0}}$ then $|f(y)-f(x)|<\epsilon$. And this shows that f is continuous at x. Since x was arbitrary, f is continuous on R^{n}.

PROBLEM 8. Suppose X, Y are metric spaces and $f: X \rightarrow Y$ is a continuous function. For all n let K_{n} be nonempty compact sets such that $K_{n+1} \subset K_{n}$ and let $K=\cap K_{n}$. Show that $f(K)=\cap f\left(K_{n}\right)$.
SOLUTION. Since $f(K) \subset f\left(K_{n}\right)$ for all n, we have $f(K) \subset \cap f\left(K_{n}\right)$. Now, let $y \in \cap f\left(K_{n}\right)$. Then, $f^{-1}(\{y\}) \cap K_{n}$ is non-empty and compact. Also, since for any n,

$$
f^{-1}(\{y\}) \cap K_{n+1} \subset f^{-1}(\{y\}) \cap K_{n}
$$

the set

$$
\bigcap_{n=1}^{\infty}\left(f^{-1}(\{y\}) \cap K_{n}\right)=f^{-1}(\{y\}) \cap K
$$

is non-empty, so $y \in f(K)$.
PROBLEM 9.Show that every orthonormal sequence in an infinite-dimensional Hilbert space converges weakly to 0 .

SOLUTION. Let $\left(x_{j}\right)$ be an orthonormal sequence in a Hilbert space H. We need to show that $f\left(x_{j}\right) \rightarrow 0$ for all $f \in H^{*}$. By Riesz representation theorem that is same as showing $<x_{j}, y>\rightarrow 0$ for all $y \in H$. This follows from the Bessel's inequality

$$
\sum_{j}\left|<x_{j}, y>\right|^{2} \leq\|y\|^{2}<\infty
$$

PROBLEM 10. Let X be a topological space, Y a Hausdorff space, and f, g continuous functions from X to Y.
a.) Show that $\{x: f(x)=g(x)\}$ is closed.
b.) Show that if $f=g$ on a dense subset of X, then $f=g$ on all of X.

SOLUTION.

a.) We show that $\{x: f(x) \neq g(x)\}$ is open. Pick any x with $f(x) \neq g(x)$. Since Y is Hausdorff, we can find disjoint open sets U, V with $f(x) \in U$ and $g(x) \in V$. By continuity, $f^{-1}(U)$ and $g^{-1}(V)$ are open sets in X and both contain x, so $O=f^{-1}(U) \cap g^{-1}(V)$ is an open set around \mathbf{x}. For any $y \in O, f(y) \in U$ and $g(y) \in V$ so $f(y) \neq g(y)$.
b.) The set where $f=g$ is closed. If $f=g$ on any set A, then $f=g$ on closure of A, since the closure of A is the smallest closed set which contains A. "Dense" means that the closure is all of X.

PROBLEM 11. Suppose $\left(f_{n}\right)$ is a sequence of continuous functions such that f_{n} : $[0,1] \rightarrow R$ and as $n, m \rightarrow \infty$,

$$
\int_{0}^{1}\left(f_{n}(x)-f_{m}(x)\right)^{2} d x \rightarrow 0
$$

Suppose also that $K:[0,1] \times[0,1] \rightarrow R$ is continuous. Define $g_{n}:[0,1] \rightarrow R$ by

$$
g_{n}=\int_{0}^{1} K(x, y) f_{n}(y) d y
$$

Show that $\left(g_{n}\right)$ is uniformly convergent sequence.
SOLUTION. First, let us show that the sequence $\left(g_{n}\right)$ is cauchy in the supremum norm.

$$
\begin{aligned}
& \left|g_{n}(x)-g_{m}(x)\right| \leq \int_{0}^{1}|K(x, y)|\left|f_{n}(y)-f_{m}(y)\right| d y \\
& \leq\left(\int_{0}^{1}|K(x, y)|^{2} d y\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|f_{n}(y)-f_{m}(y)\right|^{2} d y\right)^{\frac{1}{2}}
\end{aligned}
$$

implies that

$$
\sup _{x \in[0,1]}\left|g_{n}(x)-g_{m}(x)\right| \leq \sup _{x \in[0,1]}\left(\int_{0}^{1}|K(x, y)|^{2} d y\right)^{\frac{1}{2}}\left(\int_{0}^{1}\left|f_{n}(y)-f_{m}(y)\right|^{2} d y\right)^{\frac{1}{2}} .
$$

Since K is continuous it is integrable and $M=\sup _{x, y \in[0,1]}|K(x, y)|$ exists and this gives,

$$
\left\|g_{n}(x)-g_{m}(x)\right\|_{\infty} \leq M\left(\int_{0}^{1}\left|f_{n}(x)-f_{m}(x)\right|^{2} d y\right)^{\frac{1}{2}} \rightarrow 0
$$

so, $\left(g_{n}\right)$ is a Cauchy sequence in the supremum norm.But, we know that $C[0,1]$ is complete under this norm, so the sequence $\left(g_{n}\right)$ converges under this norm which is equivalent to converging uniformly.

PROBLEM 12. Let C denote the space of all bounded continuous functions on the real line R equipped with the supremum norm. Let S be the subspace of C consisting of functions f such that

$$
\lim _{n \rightarrow \infty} f(x)
$$

exists.
a.) Is S a closed linear subspace of C ?
b.) Show that there is a bounded linear functional L on C so that

$$
L(f)=\lim _{x \rightarrow \infty} f(x)
$$

for all $f \in S$.
c.) Is there a bounded Borel measure μ so that $L(f)=\int_{R} f d \mu$ for all $f \in C$?

SOLUTION.

a.) Given $\epsilon>0, \sup _{t \in R}\left|f_{n}(t)-f(t)\right|=\left\|f_{n}-f\right\|_{\infty}<\epsilon / 3$ we need to decide whether or not $f \in S$.
Claim: $f \in S$ i.e. $\lim _{n \rightarrow \infty} f(x)$ exists. Suppose not, then for all $\delta>0$, there is an $\epsilon_{0}>0$ such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon_{0}$. Now, we are given $\left\|f_{n}-f\right\|_{\infty}<\epsilon / 3 \Leftrightarrow$ $\sup _{t \in R}\left|f_{n}(t)-f(t)\right|<\epsilon / 3$. But then we have $\left|f_{n}(x)-f(x)\right|<\epsilon / 3$ and $\left|f_{n}(y)-f(y)\right|<\epsilon / 3$. This yields,

$$
|f(x)-f(y)|<\left|f(x)-f_{n}(x)\right|+\left|f_{n}(y)-f(y)\right|+\left|f_{n}(x)-f_{n}(y)\right|<\epsilon_{0} / 3+\epsilon_{0} / 3+\epsilon_{0} / 3
$$

$\Rightarrow|f(x)-f(y)|<\epsilon_{0}$, which gives us a contradiction. Thus, S is a closed linear subspace. b.) We will use Hahn-Banach Theorem to show the existence of L on C. For this, we need to find a sublinear functional p on C such that $\rho_{0}(f) \leq p(f)$ for all $f \in S$. Define,
$\mathrm{p}(\mathrm{f})= \begin{cases}\lim _{x \rightarrow \infty} f(x) & \text { if } f \in S \\ 0 & \text { otherwise }\end{cases}$
then, $p(f+g)=\lim _{x \rightarrow \infty}(f+g)=p(f)+p(g)$ if $f, g \in S$. and $p(f+g)=0=p(f)+p(g)$ if $f, g \notin S$. Also, $p(a f)=a \lim _{x \rightarrow \infty} f(x)=a p(f)$ if $f \in S$ and $p(a f)=0=a p(f)$ if $f \notin S$.
So, p is indeed a sublinear functional on C such that $\rho_{0}(f)=\lim _{x \rightarrow \infty} f(x) \leq p(f)$ for all $f \in S$. Therefore, by the Hahn Banach Theorem, there is a linear functional L on C such that $L(f) \leq p(y)$ for all $f \in C$ and $L(f)=\rho_{0}(f)=\lim _{x \rightarrow \infty} f(x)$ if $f \in S$.
c.) We claim that there is no such Borel measure. Let us suppose there is one. Then on the left hand side we will have $\lim _{x \rightarrow \infty} f(x)$ which is translation invariant i.e. $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} f(x+a)$ for all $a \in R$. But, the only measure which is translation invariant is the Lebesgue measure, which is not bounded. So, there is no such bounded Borel measure.

PROBLEM 13. Let X be a normed linear space. Show that if S is an open subspace of X, then $S=X$.

SOLUTION. Let S be an open subspace of X. Since S is open and $0 \in S$, there exists $r>0$ such that $B(0, r) \subset S$. Let $x \in X$. Fix any $R>\frac{1}{r}\|x\|$, and set $y=\frac{1}{R} x$. Then, $\|y\|=\frac{1}{R}\|x\|<r$, so $y \in B(0, r) \subset S$. Since S is closed under scalar multiplication, we conclude that $x=R y \in S$. Thus, we have shown $X \subseteq S$ and the other inclusion is clear so that we have $X=S$.

PROBLEM 14. Suppose that A and K are closed subsets of an additive topological group G, prove that if K is compact then $A+K$ is closed.
SOLUTION. Let $p \in \overline{A+K}$. For each neighborhood U of p, let $K_{U}=\{k: k \in K, k \in$ $U-A\}$. Since $p \in \overline{A+K}$, each K_{U} is non-empty. It is clear that if $U_{1} \subseteq U_{2}$, then $K_{U_{1}} \subseteq K_{U_{2}}$. It follows that the closed sets $\overline{K_{U}}$ have the finite intersection property. So their intersection is non-empty. Now let $k_{0} \in K=\cap \overline{K_{U}}$. Thus, if N is any neighborhood of the identity,

$$
\left(N+k_{0}\right) \cap(N+p-A) \neq \emptyset .
$$

This means that $\left(N-N+k_{0}\right) \cap(p-A) \neq \emptyset$. If M is any neighborhood of the identity, there is a neighborhood N of the identity such that $N-N \subseteq M$. Thus, any neighborhood of k_{0} intersects $p-A$. Since A is closed, $p-A$, and thus $p \in A+k_{0} \subseteq a+K$.

PROBLEM 15. Let X and Y be normed vector spaces, and let $L: X \rightarrow Y$ be linear and bounded.
a.) Show that $N(L)=\{x \in X: L(x)=0\}$ is a closed subspace of X.
b.) Now let $X=C$, the set of complex numbers. Shiw that $R(L)=\{L(x): x \in C\}$ is a closed subspace of Y. Hint: Every vector in C is a scalr multiple of 1 .

SOLUTION.

a.) Let $x, y \in N(L)$ and $a, b \in F$, then $L(a x+b y)=a L(x)+b L(y)=0$, so $a x+b y \in N(L)$. Thus, $N(L)$ is a subspace.
Suppose that x is a limit point of $N(L)$. Then there exists $x_{n} \in N(L)$ such that $x_{n} \rightarrow x$. But L is continuous, so $0=L\left(x_{n}\right)=L(x)$, so $x \in N(L)$.
b.) If $p=L(x), q=L(y) \in R(L)$ and $a, b \in F$, then $a p+b q=a L(x)+b L(y)=$ $L(a x+b y) \in R(L)$. Thus, $R(L)$ is a subspace.
Suppose that y is a limit point of Y. Then, there exists $y_{n}=L\left(x_{n}\right) \in R(L)$ such that $y_{n} \rightarrow y$. We have $x_{n} \in C$ and L is linear, so $L\left(x_{n}\right)=x_{n} L(1)$. If $L(1)=0$ then $R(L)=\{0\}$ and we are done. If $L(1) \neq 0$, then

$$
\left\|y_{n}-y_{m}\right\|=\left\|L\left(x_{n}\right)-L\left(x_{m}\right)\right\|=\left\|\left(x_{n}-x_{m}\right) L(1)\right\|=\left|x_{n}-x_{m}\right| \cdot\|L(1)\| .
$$

Since $\|L(1)\|$ is a fixed constant and $\left\{y_{n}\right\}$ is a Cauchy sequence in Y, we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence of scalars in C, and since L is continuous, this implies $y_{n}=L\left(x_{n}\right) \rightarrow L(x)$. Since limits are unique, we have $y=L(x) \in R(L)$.
PROBLEM 16. Define $L: l^{2} \rightarrow l^{2}$ by $L\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. Prove that L is bounded and find $\|L\|$. Is L injective?

SOLUTION. Let $x=\left(x_{1}, x_{2}, \ldots\right) \in l^{2}$, then

$$
\|L(x)\|_{2}^{2}=\sum_{k=2}^{\infty}\left|x_{k}\right|^{2} \leq \sum_{k=1}^{\infty}\left|x_{k}\right|^{2}=\|x\|_{2}^{2}
$$

Hence, L is bounded, and

$$
\|L\|=\sup _{\|x\|_{2}=1}\|L(x)\|_{2} \leq \sup _{\|x\|_{2}=1}\|x\|_{2}=1
$$

On the other hand, since $e=(0,1,0, \ldots)$ and $L(e)=(1,0,0, \ldots)$ are both unit vectors, we have $\|L\| \geq 1$. Therefore, $\|L\|=1$. L is not injective since $L(1,0,0, \ldots)=L(0,0,0, \ldots)$.
PROBLEM 17. Let X be a normed space, and suppose that $x_{n} \rightarrow x \in X$. Show that there exists a subsequence $\left(x_{n k}\right)$ such that

$$
\sum_{k=1}^{\infty}\left\|x-x_{n k}\right\|<\infty
$$

SOLUTION. We are given that $\left\|x-x_{n}\right\| \rightarrow 0$. There exists, N_{1} such that $\left\|x-x_{n}\right\|<\frac{1}{2}$ for $n \geq N_{1}$. Let $n_{1}=N_{1}$. There exists an N_{2} such that $\left\|x-x_{n}\right\|<\frac{1}{2^{2}}$ for $n \geq N_{2}$. Choose any $n_{2}>n_{1}, N_{2}$. There exists an N_{3} such that $\left\|x-x_{n}\right\|<\frac{1}{2^{3}}$ for $n \geq N_{3}$. Choose any $n_{3}>n_{2}, N_{3}$. Continuing in this fashion, we obtain $n_{1}<n_{2}<n_{3}<\ldots$ in such a way that

$$
\sum_{k=1}^{\infty}\left\|x-x_{k}\right\| \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}}<\infty
$$

