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FUNCTIONAL ANALYSIS Spring 2003

SOLUTIONS TO SOME PROBLEMS

Warning:These solutions may contain errors!!

PREPARED BY SULEYMAN ULUSOY

PROBLEM 1. Prove that a necessary and sufficient condition that the metric space
(

X, d
)

be complete is that every nested sequence of nonempty closed sets (Fi)
∞
i=1 with

diameters tending to 0 , has a nonempty intersection:

∞
⋂

i=1

Fi 6= ∅.

SOLUTION.

(=⇒:) Suppose first that
(

X, d
)

is complete. We shall show that the above condition
is satisfied under this assumption. Suppose that (Fi) (i=1,2,...) is a nested sequence of
nonempty closed sets such that diam(Fi) := supa,b,∈Fi

d(a, b) → 0. By selecting a point
xn ∈ Fn for each n = 1, 2, .., we can generate a sequence (xn). This sequence must be
Cauchy sequence, because, assuming m > n, we have d(xm, xn) ≤ diam(Fn), which tends
to ). Since

(

X, d
)

is complete, (xn) must have a limit x. Now, for any given m, we have
a sequence of points {xm, xm+1, ...} ⊂ Fn. By this we have, x ∈ closure(Fn) = Fn, ∀n.
Hence, x ∈

⋂∞
i=1 Fi.

(:⇐=) Conversely, suppose that the given condition is satisfied and let (xn) be a Cauchy
sequence. Letting Hn = {xn, xn+1, ...}, we can say that, since (xn) is a Cauchy sequence,
diam(Hn) → 0. It is also true that diam(closure(Hn)) → 0. Further, since

Hn+1 ⊂ Hn ⇒ closure(Hn+1) ⊂ closure(Hn),

we see that (closure(Hn)) is a closed, nested sequence of nonempty sets in X, whose
diameters tend to 0. By the hypothesis, we can conclude the existence of an x such that

x ∈
∞
⋂

i=1

closure(Hn).
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Therefore, since d(xn, x) ≤ diam(closure(Hn)) → 0, we see that xn → x.

PROBLEM 2. Let f be acontinuous function such that f : X → Y where X and Y
are metric spaces. Suppose A is a compact subset of X, prove that f(A) is a compact
subset of Y .

SOLUTION. Let (Gα) be a collection of open sets in Y such that

f(A) ⊂
⋃

α

Gα.

Now we have,

A ⊂ f−1(f(A)) ⊂ f−1
(

⋃

α

Gα

)

=
⋃

α

f−1(Gα).

Since f is continuous each of the f−1(Gα) are open sets. Thus, the family (f−1(Gα) is
an open covering for A. But by assumption A is compact, so there exist G1, G2, ..., Gn

such that

A ⊂
⋃

i=1n

f−1(Gi),

which implies

f(A) ⊂
n

⋃

i=1

f
(

f−1(Gi)
)

⊂
n

⋃

i=1

Gi.

We have succeeded in selecting a finite subcovering from the original open covering for
f(A), and that shows f(A) is compact.

PROBLEM 3. We know that if (X, d) is a metric space. Then A ⊂ X is compact
only if A is closed and bounded. In Rn we know that the converse is also true which
is precisely the statement of the Heine-Borel Theorem. Give a counterexample to show
that the converse is not necessarily true if we have an arbitrary metric space.

SOLUTION. Suppose X is any infinite set and the trivial metric d is assigned to it.
For ε < 1

2
we have

Sε(x) = {x} ⊂ {x}

from which we conclude that even one-point sets in this metric space are open sets. X
is itself bounded set as the distance between any two points is at most 1 and even this
space is complete(exercise!). Since X is the whole space X is also closed. Now if we
consider the following open covering of X,

X ⊂
⋃

x∈X

{x}.

It is clear that no finite subcovering can be chosen from this covering, so X is not
compact though it is closed and bounded.
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PROBLEM 4. For each n let fn : R → R be a differentiable function. Suppose also
that for each n and x we have |f ′

n| ≤ 1. Show that if for all x limn→∞ fn(x) = g(x) then
g : R → R is a continuous function.

SOLUTION. Fix ε > 0. For real numbers a < b, we can choose n so large that
|fn(a)−g(a)| < ε and |fn(b)−g(b)| < ε. Then by the Mean Value Theorem, for a < ξ < b,
we have the following estimate:

|g(a) − g(b)| ≤ |g(a) − fn(a)| + |fn(a) − fn(b)| + |fn(b) − g(b)| < 2ε + |f ′
n(ξ)||b − a|.

Since ε > 0 is arbitrary, the above estimate implies, |g(a)−g(b)| ≤ |b−a| and this shows
that g is continuous.

PROBLEM 5. Let fn : [0, 1] → [0,∞) be continuous for n = 1, 2, .... Suppose

(∗)f1(x) ≥ f2(x) ≥ f3 ≥ ...

for x ∈ [0, 1] and let f(x) = limn→∞ fn(x), M = supx∈[0,1] f(x).
a.)Show that there exists t ∈ [0, 1] such that f(t) = M.
b.)Does the conclusion remain valid if we replace the condition (∗) by the follwing
condition? Suppose there exists nx such that fn(x) ≥ fn+1(x) for all x ∈ [0, 1] and

n > nx.

SOLUTION.

a.) For ε > 0, define Sε = {x ∈ [0, 1] : f(x) ≥ M − ε}. To have f(x) ≥ M − ε the
necessary and sufficient condition is to have fn(x) ≥ M − ε for all n. Hence we have
Sε =

⋂

n≥1 f−1
n ([m− ε,∞)). Note that Sε is nonempty and closet set for any ε. For finite

number of positive numbers εi,
⋂

i Sεi
= Sminεi

6= ∅. Since [0, 1] is compact
⋂

ε Sε 6= ∅.
Suppose t ∈

⋂

ε Sε. Then we have, M −ε ≤ f(t) ≤ M .Since ε > 0 is arbitrary, f(t) = M.
b.) The conclusion does not remain valid if the condition (∗) is replaced by Suppose

there exists nx such that fn(x) ≥ fn+1(x) for all x ∈ [0, 1] and n > nx. For a counter
example consider fn(x) = min{nx, 1 − x}.

PROBLEM 6. Let (fn) be a nondecreasing sequence of functions from [0, 1] to [0, 1].
Suppose limn→∞ fn(x) = f(x) and suppose also that f is continuous. Prove that fn → f
uniformly.

SOLUTION. Since [0, 1] is compact and f is continuous on [0, 1], f is uniformly con-
tinuous. Fix ε > 0. Then there is a δ > 0 such that,whenever |x − y| < δ we
have |f(x) − f(y)| < ε. Choose a natural number N such that 1

N
< δ. Then for

0 ≤ k ≤ N let ξk = k
N

and divide [0, 1] into subintervals of the form [ξk−1, ξk]. Since,
fn(x) → f pointwise, we can find M > 0, by taking maximum over the finite (ξk), so
that |fn(ξk) − f(ξk)| < ε whenever n ≥ M . Since (fn) is a nondecreasing sequence of
functions for x ∈ [ξk−1, ξk] we have,

f(ξk−1) − ε < fn(x) < f(ξk−1) + 2ε
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which is equivalent to |fn(x) − f(ξk−1)| < 2ε. Thus, we have the following estimate,

|fn(x) − f(x)| ≤ |fn(x) − f(ξk−1| + |f(ξk−1) − f(x)| < 3ε.

Since the above inequality does not depend on the particular point, we have the uniform
convergence of fn to f.

PROBLEM 7. Suppose f : Rn → Rm satisfies following properties.
(i) For all compact subsets K of Rn, f(K) is also compact.
(ii) For decreasing sequence (Kn) of compact subsets of Rn one has f(∩nKn) = ∩nf(Kn).
Show that f is a continuous function on Rn.

SOLUTION. Pick ε > 0 and x ∈ Rn. Let B be an open ball of radius ε and centered
at f(x) and for all n let Kn be the closed ball of radius 1

n
centered at x. By (ii) we have

∩∞
n=1f(Kn) = {f(x)}. For all n = 1, 2, ..., the sets (Rn − B) ∩ f(Kn) are compact and

these sets form a decreasing sequence. By the previous equality their intersection is the
empty set. Hence, there exists an n0 so that (Rn − B) ∩ f(Kn0

) = ∅. From this we get,
when |y − x| < 1

n0

then |f(y) − f(x)| < ε. And this shows that f is continuous at x.
Since x was arbitrary, f is continuous on Rn.

PROBLEM 8. Suppose X, Y are metric spaces and f : X → Y is a continuous
function. For all n let Kn be nonempty compact sets such that Kn+1 ⊂ Kn and let
K = ∩Kn. Show that f(K) = ∩f(Kn).

SOLUTION. Since f(K) ⊂ f(Kn) for all n, we have f(K) ⊂ ∩f(Kn). Now, let
y ∈ ∩f(Kn). Then, f−1({y}) ∩ Kn is non-empty and compact. Also, since for any n,

f−1({y}) ∩ Kn+1 ⊂ f−1({y}) ∩ Kn

the set
∞
⋂

n=1

(f−1({y}) ∩ Kn) = f−1({y}) ∩ K

is non-empty, so y ∈ f(K).

PROBLEM 9.Show that every orthonormal sequence in an infinite-dimensional Hilbert
space converges weakly to 0.

SOLUTION. Let (xj) be an orthonormal sequence in a Hilbert space H. We need to
show that f(xj) → 0 for all f ∈ H∗. By Riesz representation theorem that is same as
showing < xj, y >→ 0 for all y ∈ H. This follows from the Bessel’s inequality

∑

j

| < xj, y > |2 ≤ ||y||2 < ∞.

PROBLEM 10. Let X be a topological space, Y a Hausdorff space, and f, g continuous
functions from X to Y.
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a.) Show that {x : f(x) = g(x)} is closed.
b.) Show that if f = g on a dense subset of X, then f = g on all of X.

SOLUTION.

a.) We show that {x : f(x) 6= g(x)} is open. Pick any x with f(x) 6= g(x). Since Y is
Hausdorff, we can find disjoint open sets U, V with f(x) ∈ U and g(x) ∈ V. By continuity,
f−1(U) and g−1(V ) are open sets in X and both contain x, so O = f−1(U) ∩ g−1(V ) is
an open set around x. For any y ∈ O, f(y) ∈ U and g(y) ∈ V so f(y) 6= g(y).
b.) The set where f = g is closed. If f = g on any set A, then f = g on closure of A,
since the closure of A is the smallest closed set which contains A. ”Dense” means that
the closure is all of X.

PROBLEM 11. Suppose (fn) is a sequence of continuous functions such that fn :
[0, 1] → R and as n, m → ∞,

∫ 1

0

(fn(x) − fm(x))2dx → 0.

Suppose also that K : [0, 1] × [0, 1] → R is continuous. Define gn : [0, 1] → R by

gn =

∫ 1

0

K(x, y)fn(y)dy.

Show that (gn) is uniformly convergent sequence.

SOLUTION. First, let us show that the sequence (gn) is cauchy in the supremum
norm.

|gn(x) − gm(x)| ≤

∫ 1

0

|K(x, y)||fn(y) − fm(y)|dy

≤
(

∫ 1

0

|K(x, y)|2dy
)

1

2

(

∫ 1

0

|fn(y) − fm(y)|2dy
)

1

2

implies that

sup
x∈[0,1]

|gn(x) − gm(x)| ≤ sup
x∈[0,1]

(

∫ 1

0

|K(x, y)|2dy
)

1

2

(

∫ 1

0

|fn(y) − fm(y)|2dy
)

1

2 .

Since K is continuous it is integrable and M = supx,y∈[0,1] |K(x, y)| exists and this gives,

||gn(x) − gm(x)||∞ ≤ M
(

∫ 1

0

|fn(x) − fm(x)|2dy
)

1

2 → 0

so, (gn) is a Cauchy sequence in the supremum norm.But, we know that C[0, 1] is
complete under this norm, so the sequence (gn) converges under this norm which is
equivalent to converging uniformly.
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PROBLEM 12. Let C denote the space of all bounded continuous functions on the
real line R equipped with the supremum norm. Let S be the subspace of C consisting
of functions f such that

lim
n→∞

f(x)

exists.
a.) Is S a closed linear subspace of C?
b.)Show that there is a bounded linear functional L on C so that

L(f) = lim
x→∞

f(x)

for all f ∈ S.
c.) Is there a bounded Borel measure µ so that L(f) =

∫

R
fdµ for all f ∈ C?

SOLUTION.

a.) Given ε > 0, supt∈R |fn(t) − f(t)| = ||fn − f ||∞ < ε/3 we need to decide whether or
not f ∈ S.
Claim: f ∈ S i.e.limn→∞ f(x) exists. Suppose not, then for all δ > 0, there is an ε0 > 0
such that |x − y| < δ but |f(x) − f(y)| ≥ ε0. Now, we are given ||fn − f ||∞ < ε/3 ⇔
supt∈R |fn(t)−f(t)| < ε/3. But then we have |fn(x)−f(x)| < ε/3 and |fn(y)−f(y)| < ε/3.
This yields,

|f(x) − f(y)| < |f(x) − fn(x)| + |fn(y) − f(y)|+ |fn(x) − fn(y)| < ε0/3 + ε0/3 + ε0/3

⇒ |f(x)−f(y)| < ε0, which gives us a contradiction. Thus, S is a closed linear subspace.
b.) We will use Hahn-Banach Theorem to show the existence of L on C. For this, we
need to find a sublinear functional p on C such that ρ0(f) ≤ p(f) for all f ∈ S. Define,

p(f)=

{

limx→∞ f(x) if f ∈ S
0 otherwise

then, p(f +g) = limx→∞(f +g) = p(f)+p(g) if f, g ∈ S. and p(f +g) = 0 = p(f)+p(g)
if f, g /∈ S. Also, p(af) = a limx→∞ f(x) = ap(f) if f ∈ S and p(af) = 0 = ap(f) if
f /∈ S.
So, p is indeed a sublinear functional on C such that ρ0(f) = limx→∞ f(x) ≤ p(f) for
all f ∈ S. Therefore, by the Hahn Banach Theorem, there is a linear functional L on C
such that L(f) ≤ p(y) for all f ∈ C and L(f) = ρ0(f) = limx→∞ f(x) if f ∈ S.
c.) We claim that there is no such Borel measure. Let us suppose there is one.
Then on the left hand side we will have limx→∞ f(x) which is translation invariant
i.e. limx→∞ f(x) = limx→∞ f(x + a) for all a ∈ R. But, the only measure which is trans-
lation invariant is the Lebesgue measure, which is not bounded. So, there is no such
bounded Borel measure.

PROBLEM 13. Let X be a normed linear space. Show that if S is an open subspace
of X, then S = X.
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SOLUTION. Let S be an open subspace of X. Since S is open and 0 ∈ S, there exists
r > 0 such that B(0, r) ⊂ S. Let x ∈ X. Fix any R > 1

r
||x||, and set y = 1

R
x. Then,

||y|| = 1
R
||x|| < r, so y ∈ B(0, r) ⊂ S. Since S is closed under scalar multiplication, we

conclude that x = Ry ∈ S. Thus, we have shown X ⊆ S and the other inclusion is clear
so that we have X = S.

PROBLEM 14. Suppose that A and K are closed subsets of an additive topological
group G, prove that if K is compact then A + K is closed.

SOLUTION. Let p ∈ A + K. For each neighborhood U of p, let KU = {k : k ∈ K, k ∈
U − A}. Since p ∈ A + K, each KU is non-empty. It is clear that if U1 ⊆ U2, then
KU1

⊆ KU2
. It follows that the closed sets KU have the finite intersection property. So

their intersection is non-empty. Now let k0 ∈ K = ∩KU . Thus, if N is any neighborhood
of the identity,

(N + k0) ∩ (N + p − A) 6= ∅.

This means that (N −N + k0) ∩ (p− A) 6= ∅. If M is any neighborhood of the identity,
there is a neighborhood N of the identity such that N−N ⊆ M. Thus, any neighborhood
of k0 intersects p − A. Since A is closed, p − A, and thus p ∈ A + k0 ⊆ a + K.

PROBLEM 15. Let X and Y be normed vector spaces, and let L : X → Y be linear
and bounded.
a.) Show that N(L) = {x ∈ X : L(x) = 0} is a closed subspace of X.
b.) Now let X = C, the set of complex numbers. Shiw that R(L) = {L(x) : x ∈ C} is a
closed subspace of Y. Hint: Every vector in C is a scalr multiple of 1.

SOLUTION.

a.) Let x, y ∈ N(L) and a, b ∈ F, then L(ax+by) = aL(x)+bL(y) = 0, so ax+by ∈ N(L).
Thus, N(L) is a subspace.
Suppose that x is a limit point of N(L). Then there exists xn ∈ N(L) such that xn → x.
But L is continuous, so 0 = L(xn) = L(x), so x ∈ N(L).
b.) If p = L(x), q = L(y) ∈ R(L) and a, b ∈ F, then ap + bq = aL(x) + bL(y) =
L(ax + by) ∈ R(L). Thus, R(L) is a subspace.
Suppose that y is a limit point of Y. Then, there exists yn = L(xn) ∈ R(L) such that
yn → y. We have xn ∈ C and L is linear, so L(xn) = xnL(1). If L(1) = 0 then R(L) = {0}
and we are done. If L(1) 6= 0, then

||yn − ym|| = ||L(xn) − L(xm)|| = ||(xn − xm)L(1)|| = |xn − xm|.||L(1)||.

Since ||L(1)|| is a fixed constant and {yn} is a Cauchy sequence in Y, we conclude
that {xn} is a Cauchy sequence of scalars in C, and since L is continuous, this implies
yn = L(xn) → L(x). Since limits are unique, we have y = L(x) ∈ R(L).

PROBLEM 16. Define L : l2 → l2 by L(x1, x2, ...) = (x2, x3, ...). Prove that L is
bounded and find ||L||. Is L injective?
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SOLUTION. Let x = (x1, x2, ...) ∈ l2, then

||L(x)||22 =

∞
∑

k=2

|xk|
2 ≤

∞
∑

k=1

|xk|
2 = ||x||22.

Hence, L is bounded, and

||L|| = sup
||x||2=1

||L(x)||2 ≤ sup
||x||2=1

||x||2 = 1.

On the other hand, since e = (0, 1, 0, ...) and L(e) = (1, 0, 0, ...) are both unit vectors, we
have ||L|| ≥ 1. Therefore, ||L|| = 1. L is not injective since L(1, 0, 0, ...) = L(0, 0, 0, ...).

PROBLEM 17. Let X be a normed space, and suppose that xn → x ∈ X. Show that
there exists a subsequence (xnk) such that

∞
∑

k=1

||x − xnk|| < ∞.

SOLUTION. We are given that ||x−xn|| → 0. There exists, N1 such that ||x−xn|| < 1
2

for n ≥ N1. Let n1 = N1. There exists an N2 such that ||x−xn|| < 1
22 for n ≥ N2. Choose

any n2 > n1, N2. There exists an N3 such that ||x − xn|| < 1
23 for n ≥ N3. Choose any

n3 > n2, N3. Continuing in this fashion, we obtain n1 < n2 < n3 < ... in such a way that

∞
∑

k=1

||x − xk|| ≤
∞

∑

k=1

1

2k
< ∞.
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