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FUNCTIONAL ANALYSIS Spring 2003
SOLUTIONS TO SOME PROBLEMS

Warning: These solutions may contain errors!!

PREPARED BY SULEYMAN ULUSOY

PROBLEM 1. Prove that a necessary and sufficient condition that the metric space
(X , d) be complete is that every nested sequence of nonempty closed sets (F;)52; with
diameters tending to 0 , has a nonempty intersection:

() F: #0.
i=1

SOLUTION.

(=) Suppose first that (X , d) is complete. We shall show that the above condition
is satisfied under this assumption. Suppose that (F;) (i=1,2,...) is a nested sequence of
nonempty closed sets such that diam(F;) := sup,; cr. d(a,b) — 0. By selecting a point
x, € F, for each n = 1,2,.., we can generate a sequence (z,). This sequence must be
Cauchy sequence, because, assuming m > n, we have d(z,,, x,) < diam(F},,), which tends
to ). Since (X , d) is complete, (x,) must have a limit x. Now, for any given m, we have
a sequence of points {x,,, Tm1,...} C F,. By this we have, = € closure(F,) = F,,Vn.
Hence, z € (2, Fi.

(:<=) Conversely, suppose that the given condition is satisfied and let (z,,) be a Cauchy
sequence. Letting H,, = {x,, Z,11, ...}, we can say that, since (z,,) is a Cauchy sequence,
diam(H,) — 0. It is also true that diam(closure(H,)) — 0. Further, since

H,.1 C H, = closure(H,,1) C closure(H,),

we see that (closure(H,)) is a closed, nested sequence of nonempty sets in X, whose
diameters tend to 0. By the hypothesis, we can conclude the existence of an = such that

T € ﬂ closure(H,).

i=1



Therefore, since d(x,,, ) < diam(closure(H,)) — 0, we see that x, — =.

PROBLEM 2. Let f be acontinuous function such that f: X — Y where X and Y
are metric spaces. Suppose A is a compact subset of X, prove that f(A) is a compact
subset of Y.

SOLUTION. Let (G,) be a collection of open sets in Y such that

f(4) c | JGa.

Now we have,

Ac ) c T (UGa) = 1(Ga)

Since f is continuous each of the f~1(G,) are open sets. Thus, the family (f~!(G,) is
an open covering for A. But by assumption A is compact, so there exist G1, G, ..., G,
such that

Ac | @,

i=1n

which implies

We have succeeded in selecting a finite subcovering from the original open covering for
f(A), and that shows f(A) is compact.

PROBLEM 3. We know that if (X, d) is a metric space. Then A C X is compact
only if A is closed and bounded. In R"™ we know that the converse is also true which
is precisely the statement of the Heine-Borel Theorem. Give a counterexample to show
that the converse is not necessarily true if we have an arbitrary metric space.

SOLUTION. Suppose X is any infinite set and the trivial metric d is assigned to it.

For € < % we have
Se(z) = {z} C {z}

from which we conclude that even one-point sets in this metric space are open sets. X
is itself bounded set as the distance between any two points is at most 1 and even this
space is complete(exercise!). Since X is the whole space X is also closed. Now if we
consider the following open covering of X,

X c | J{=}

It is clear that no finite subcovering can be chosen from this covering, so X is not
compact though it is closed and bounded.



PROBLEM 4. For each n let f,, : R — R be a differentiable function. Suppose also
that for each n and x we have |f/| < 1. Show that if for all x lim,, . f,(z) = g(z) then
g : R — R is a continuous function.

SOLUTION. Fix € > 0. For real numbers a < b, we can choose n so large that
|fn(a)—g(a)| < eand |f,(b)—g(b)| < e. Then by the Mean Value Theorem, for a < £ < b,
we have the following estimate:

l9(a) = g(b)] < lg(a) = fula)| + | fula) = fu(O)] + [ fn(b) — g(b)] < 2¢ + [[L(E)]Ib—al.

Since € > 0 is arbitrary, the above estimate implies, |g(a) —g(b)| < |b—a| and this shows
that ¢ is continuous.

PROBLEM 5. Let f, : [0,1] — [0, 00) be continuous for n = 1,2, .... Suppose

() falw) = fola) = fs = ...

for ¥ € [0,1] and let f(z) = lim,, .o fu(x), M = sup,¢jo 1 f(2).

a.)Show that there exists ¢ € [0, 1] such that f(t) = M.

b.)Does the conclusion remain valid if we replace the condition (%) by the follwing
condition? Suppose there exists n, such that f,(x) > faoy1(x) for all x € [0,1] and
n> ng.

SOLUTION.

a.) For € > 0, define S, = {z € [0,1] : f(z) > M —€}. To have f(z) > M — € the
necessary and sufficient condition is to have f,(z) > M — € for all n. Hence we have
Se =Nys1 fo (Jm—¢,00)). Note that S, is nonempty and closet set for any e. For finite
number of positive numbers €;,(; Se; = Smine; # 0. Since [0, 1] is compact (), S # 0.
Suppose t € (). Se. Then we have, M —e < f(t) < M .Since € > 0 is arbitrary, f(t) = M.
b.) The conclusion does not remain valid if the condition (x) is replaced by Suppose
there exists ny such that f,(x) > foi1(z) for all x € [0,1] and n > n,. For a counter
example consider f,(z) = min{nz,1 — x}.

PROBLEM 6. Let (f,) be a nondecreasing sequence of functions from [0, 1] to [0, 1].
Suppose lim,, ., f,(x) = f(x) and suppose also that f is continuous. Prove that f,, — f
uniformly.

SOLUTION. Since [0, 1] is compact and f is continuous on [0, 1], f is uniformly con-
tinuous. Fix ¢ > 0. Then there is a 6 > 0 such that,whenever |z —y| < J we
have |f(z) — f(y)| < e. Choose a natural number N such that 5 < 6. Then for
0 <k < N let & = £ and divide [0,1] into subintervals of the form [¢_1,&]. Since,
fn(x) — f pointwise, we can find M > 0, by taking maximum over the finite (£), so
that |f,(&) — f(&)| < € whenever n > M. Since (f,) is a nondecreasing sequence of

functions for x € [§;_1, ] we have,

f(&r—1) — € < fa(@) < f&k-1) +2€



which is equivalent to |f,(z) — f(&—1)| < 2e. Thus, we have the following estimate,

[fu(2) = f(@)] < |fal@) = f(E—rl + [f(Er—1) — f(2)] < 3e.

Since the above inequality does not depend on the particular point, we have the uniform
convergence of f, to f.

PROBLEM 7. Suppose f : R" — R™ satisfies following properties.

(i) For all compact subsets K of R", f(K) is also compact.

(ii) For decreasing sequence (K,,) of compact subsets of R™ one has f(N,K,) = N, f(K,).
Show that f is a continuous function on R".

SOLUTION. Pick € > 0 and x € R". Let B be an open ball of radius € and centered
at f(z) and for all n let K,, be the closed ball of radius + centered at z. By (ii) we have
N> f(K,) = {f(x)}. Forall n = 1,2,..., the sets (R" — B) N f(K,) are compact and
these sets form a decreasing sequence. By the previous equality their intersection is the
empty set. Hence, there exists an ng so that (R" — B) N f(K,,) = 0. From this we get,
when [y — x| < .- then |f(y) — f(2)| < e. And this shows that f is continuous at z.
Since x was arbitrary, f is continuous on R".

PROBLEM 8. Suppose X,Y are metric spaces and f : X — Y is a continuous
function. For all n let K,, be nonempty compact sets such that K,,; C K, and let
K =nK,. Show that f(K)=nNf(K,).

SOLUTION. Since f(K) C f(K,) for all n, we have f(K) C Nf(K,). Now, let
y € Nf(K,). Then, f~*({y}) N K, is non-empty and compact. Also, since for any n,

Ty N K € T {y) N K,

the set

[e o]

Ny nK) =Nk

n=1
is non-empty, so y € f(K).

PROBLEM 9.Show that every orthonormal sequence in an infinite-dimensional Hilbert
space converges weakly to 0.

SOLUTION. Let (z;) be an orthonormal sequence in a Hilbert space H. We need to
show that f(z;) — 0 for all f € H*. By Riesz representation theorem that is same as
showing < x;,y >— 0 for all y € H. This follows from the Bessel’s inequality

d I <ajy> P <yl < oo
J

PROBLEM 10. Let X be a topological space, Y a Hausdorff space, and f, g continuous
functions from X to Y.



a.) Show that {z : f(z) = g(x)} is closed.
b.) Show that if f = g on a dense subset of X, then f = g on all of X.

SOLUTION.

a.) We show that {x : f(x) # g(z)} is open. Pick any = with f(x) # g(z). Since Y is
Hausdorff, we can find disjoint open sets U, V with f(x) € U and g(z) € V. By contlnulty,
f~YU) and g=*(V) are open sets in X and both contain x, so O = f~1(U)Ng (V) is
an open set around x. For any y € O, f(y) € U and g(y) € V so f(y) # g(y )

b.) The set where f = g is closed. If f = g on any set A, then f = g on closure of A,
since the closure of A is the smallest closed set which contains A. ”Dense” means that
the closure is all of X.

PROBLEM 11. Suppose (f,) is a sequence of continuous functions such that f, :
[0,1] — R and as n,m — oo,

A&mm—muwwﬁa

Suppose also that K : [0,1] x [0,1] — R is continuous. Define g, : [0,1] — R by

34men@@

Show that (g,) is uniformly convergent sequence.

SOLUTION. First, let us show that the sequence (g,) is cauchy in the supremum
norm.

|%m—%mm/ﬂmme@—mww

/Iny )[Pdy)? /|fn — Fuly)Pdy)?

1 . B
wpmw—%MNSwp(\ny%yQ/Uh () 2dy) .

z€[0,1] z€[0,1] 0

implies that

Since K is continuous it is integrable and M = sup, ,cp0.1) | K (7, y)| exists and this gives,

ma»wanuSM/Nn — ful@)dy)t =0

so, (gn) is a Cauchy sequence in the supremum norm.But, we know that C[0,1] is
complete under this norm, so the sequence (g,) converges under this norm which is
equivalent to converging uniformly.



PROBLEM 12. Let C' denote the space of all bounded continuous functions on the
real line R equipped with the supremum norm. Let S be the subspace of C' consisting
of functions f such that

lim f(x)

exists.
a.) Is S a closed linear subspace of C?
b.)Show that there is a bounded linear functional L on C' so that

L(f) = Jm f()

for all f € S.
c.) Is there a bounded Borel measure p so that L(f) = [, fdu for all f € C?

SOLUTION.

a.) Given € > 0,sup,ep |fu(t) — f(1)] = ||fn — flloo < €/3 we need to decide whether or
not f € S.

Claim: f € S i.elim, . f(x) exists. Suppose not, then for all § > 0, there is an ¢y > 0
such that |z — y| < d but |f(z) — f(y)| > €o. Now, we are given ||f, — flloo < €/3 &

SUpser | fn(t)—f(t)| < €/3. But then we have |f,(z)—f(x)| < ¢/3 and |f.(y)—f(y)| < €/3.
This yields,

[f (@) = fFW < 1f (@) = fal@)[ + [fa(y) = FW)] + [fa(2) = fu(y)] < €0/3+€0/3+€0/3

= |f(z)— f(y)| < €0, which gives us a contradiction. Thus, S is a closed linear subspace.
b.) We will use Hahn-Banach Theorem to show the existence of L on C. For this, we
need to find a sublinear functional p on C such that po(f) < p(f) for all f € S. Define,

p(f)=

then, p(f+g) = lim,—(f +9) = p(f) +p(g) if f,g € S. and p(f +g) = 0= p(f)+p(9)
if f,g ¢ S. Also, p(af) = alim, . f(x) = ap(f) if f € S and p(af) = 0 = ap(f) if
[ s

So, p is indeed a sublinear functional on C' such that po(f) = lim, . f(x) < p(f) for
all f € S. Therefore, by the Hahn Banach Theorem, there is a linear functional L on C'
such that L(f) < p(y) for all f € C and L(f) = po(f) = lim, . f(z) if f € S.

c.) We claim that there is no such Borel measure. Let us suppose there is one.
Then on the left hand side we will have lim, . f(z) which is translation invariant
i.e.lim, o f(x) =lim, . f(z + a) for all a € R. But, the only measure which is trans-
lation invariant is the Lebesgue measure, which is not bounded. So, there is no such
bounded Borel measure.

{ lim, . f(z) if f€S

0 otherwise

PROBLEM 13. Let X be a normed linear space. Show that if S is an open subspace
of X, then S = X.



SOLUTION. Let S be an open subspace of X. Since S is open and 0 € S, there exists
r > 0 such that B(0,7) C S. Let € X. Fix any R > %|[z||, and set y = £z. Then,
lyll = %llz|| <7 soy e B(0,r) CS. Since S is closed under scalar multiplication, we
conclude that z = Ry € S. Thus, we have shown X C S and the other inclusion is clear
so that we have X = S.

PROBLEM 14. Suppose that A and K are closed subsets of an additive topological
group G, prove that if K is compact then A + K is closed.

SOLUTION. Let p € A+ K. For each neighborhood U of p, let Ky ={k: k€ K,k €
U — A}. Since p € A+ K, each Ky is non-empty. It is clear that if U; C Us,, then
Ky, C Ky,. It follows that the closed sets Ky have the finite intersection property. So
their intersection is non-empty. Now let ky € K = NKy. Thus, if N is any neighborhood
of the identity,

(N+Fko)N(N+p—A)#0.

This means that (N — N + ko) N (p — A) # 0. If M is any neighborhood of the identity,
there is a neighborhood N of the identity such that N —N C M. Thus, any neighborhood
of kg intersects p — A. Since A is closed, p — A, and thus p e A+ ky Ca+ K.

PROBLEM 15. Let X and Y be normed vector spaces, and let L : X — Y be linear
and bounded.

a.) Show that N(L) = {x € X : L(x) = 0} is a closed subspace of X.

b.) Now let X = C, the set of complex numbers. Shiw that R(L) = {L(z):x € C} is a
closed subspace of Y. Hint: Every vector in C is a scalr multiple of 1.

SOLUTION.

a.) Letz,y € N(L)and a,b € F, then L(ax+by) = aL(x)+bL(y) = 0,s0 ax+by € N(L).
Thus, N(L) is a subspace.

Suppose that x is a limit point of N(L). Then there exists x,, € N(L) such that x,, — =.
But L is continuous, so 0 = L(x,) = L(x), so z € N(L).

b.) If p = L(z),q = L(y) € R(L) and a,b € F, then ap + bqg = aL(z) + bL(y) =
L(ax +by) € R(L). Thus, R(L) is a subspace.

Suppose that y is a limit point of Y. Then, there exists y,, = L(z,) € R(L) such that
Yn — y. We have z,, € C'and L is linear, so L(x,) = x,L(1). If L(1) = 0 then R(L) = {0}
and we are done. If L(1) # 0, then

Hyn = ymll = [[1L(2n) = Llzm)| = [[(2n = 2m) LI = |20 — 2l |[L(L)]]

Since ||L(1)|| is a fixed constant and {y,} is a Cauchy sequence in Y, we conclude
that {x,} is a Cauchy sequence of scalars in C, and since L is continuous, this implies
Yn = L(x,) — L(z). Since limits are unique, we have y = L(z) € R(L).

PROBLEM 16. Define L : [* — [* by L(xy,%3,...) = (22, 3,...). Prove that L is
bounded and find ||L||. Is L injective?



SOLUTION. Let x = (xy, 1, ...) € [*, then

oo [e.e]
IL(@)5 =D lanl® < D lal® = [lalf3.
k=2 k=1

Hence, L is bounded, and

1Ll = sup [|L(2)][ < sup [|z[ls = 1.

[lz]|2=1 [lz]|2=1
On the other hand, since e = (0, 1,0, ...) and L(e) = (1, 0,0, ...) are both unit vectors, we
have ||L|| > 1. Therefore, ||L|| = 1. L is not injective since L(1,0,0,...) = L(0,0,0,...).

PROBLEM 17. Let X be a normed space, and suppose that xz,, — x € X. Show that
there exists a subsequence (x,;) such that

[o.¢]
ZHx—xnkH < 0.
k=1

SOLUTION. We are given that ||z —x,|| — 0. There exists, N; such that ||z —z,|| < 1
for n > Ny. Let ny = Ny. There exists an N such that ||z —x,|| < 55 for n > N,. Choose
any ny > ny, Na. There exists an N3 such that ||z — z,|| < 55 for n > N3. Choose any
ng > ng, N3. Continuing in this fashion, we obtain n; < ny < n3 < ... in such a way that

oo e} 1
Dl —mll <) o < oo
k=1 k=1



