Prepared by SULEYMAN ULUSOY

PROBLEM 1. Prove that a necessary and sufficient condition that the metric space (X, d) be complete is that every nested sequence of nonempty closed sets $\left(F_{i}\right)_{i=1}^{\infty}$ with diameters tending to 0 , has a nonempty intersection:

$$
\bigcap_{i=1}^{\infty} F_{i} \neq \emptyset .
$$

PROBLEM 2. Let f be acontinuous function such that $f: X \rightarrow Y$ where X and Y are metric spaces. Suppose A is a compact subset of X, prove that $f(A)$ is a compact subset of Y.

PROBLEM 3. We know that if (X, d) is a metric space. Then $A \subset X$ is compact only if A is closed and bounded. In R^{n} we know that the converse is also true which is precisely the statement of the Heine-Borel Theorem. Give a counterexample to show that the converse is not necessarily true if we have an arbitrary metric space.

PROBLEM 4. For each n let $f_{n}: R \rightarrow R$ be a differentiable function. Suppose also that for each n and x we have $\mid f_{n}^{\prime \prime \leq 1}$. Show that if for all $x \lim _{n \rightarrow \infty} f_{n}(x)=g(x)$ then $g: R \rightarrow R$ is a continuous function.
PROBLEM 5. Let $f_{n}:[0,1] \rightarrow[0, \infty)$ be continuous for $n=1,2, \ldots$. Suppose

$$
(*) f_{1}(x) \geq f_{2}(x) \geq f_{3} \geq \ldots
$$

for $x \in[0,1]$ and let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x), M=\sup _{x \in[0,1]} f(x)$.
a.) Show that there exists $t \in[0,1]$ such that $f(t)=M$.
b.) Does the conclusion remain valid if we replace the condition $(*)$ by the follwing condition? Suppose there exists n_{x} such that $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in[0,1]$ and $n>n_{x}$.

PROBLEM 6. Let $\left(f_{n}\right)$ be a nondecreasing sequence of functions from $[0,1]$ to $[0,1]$. Suppose $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ and suppose also that f is continuous. Prove that $f_{n} \rightarrow f$ uniformly.

PROBLEM 7. Suppose $f: R^{n} \rightarrow R^{m}$ satisfies following properties.
(i) For all compact subsets K of $R^{n}, f(K)$ is also compact.
(ii) For decreasing sequence $\left(K_{n}\right)$ of compact subsets of R^{n} one has $f\left(\cap_{n} K_{n}\right)=\cap_{n} f\left(K_{n}\right)$. Show that f is a continuous function on R^{n}.

PROBLEM 8. Suppose X, Y are metric spaces and $f: X \rightarrow Y$ is a continuous function. For all n let K_{n} be nonempty compact sets such that $K_{n+1} \subset K_{n}$ and let $K=\cap K_{n}$. Show that $f(K)=\cap f\left(K_{n}\right)$.

PROBLEM 9.Show that every orthonormal sequence in an infinite-dimensional Hilbert space converges weakly to 0 .

PROBLEM 10. Let X be a topological space, Y a Hausdorff space, and f, g continuous functions from X to Y.
a.) Show that $\{x: f(x)=g(x)\}$ is closed.
b.) Show that if $f=g$ on a dense subset of X, then $f=g$ on all of X.

PROBLEM 11. Suppose $\left(f_{n}\right)$ is a sequence of continuous functions such that f_{n} : $[0,1] \rightarrow R$ and as $n, m \rightarrow \infty$,

$$
\int_{0}^{1}\left(f_{n}(x)-f_{m}(x)\right)^{2} d x \rightarrow 0
$$

Suppose also that $K:[0,1] \times[0,1] \rightarrow R$ is continuous. Define $g_{n}:[0,1] \rightarrow R$ by

$$
g_{n}=\int_{0}^{1} K(x, y) f_{n}(y) d y
$$

Show that $\left(g_{n}\right)$ is uniformly convergent sequence.
PROBLEM 12. Let C denote the space of all bounded continuous functions on the real line R equipped with the supremum norm. Let S be the subspace of C consisting of functions f such that

$$
\lim _{n \rightarrow \infty} f(x)
$$

exists.
a.) Is S a closed linear subspace of C ?
b.) Show that there is a bounded linear functional L on C so that

$$
L(f)=\lim _{x \rightarrow \infty} f(x)
$$

for all $f \in S$.
c.) Is there a bounded Borel measure μ so that $L(f)=\int_{R} f d \mu$ for all $f \in C$?

PROBLEM 13. Let X be a normed linear space. Show that if S is an open subspace of X, then $S=X$.

PROBLEM 14. Suppose that A and K are closed subsets of an additive topological group G, prove that if K is compact then $A+K$ is closed.

PROBLEM 15. Let X and Y be normed vector spaces, and let $L: X \rightarrow Y$ be linear and bounded.
a.) Show that $N(L)=\{x \in X: L(x)=0\}$ is a closed subspace of X.
b.) Now let $X=C$, the set of complex numbers. Shiw that $R(L)=\{L(x): x \in C\}$ is a closed subspace of Y. Hint: Every vector in C is a scalr multiple of 1 .
PROBLEM 16. Define $L: l^{2} \rightarrow l^{2}$ by $L\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)$. Prove that L is bounded and find $\|L\|$. Is L injective?

PROBLEM 17. Let X be a normed space, and suppose that $x_{n} \rightarrow x \in X$. Show that there exists a subsequence $\left(x_{n k}\right)$ such that

$$
\sum_{k=1}^{\infty}\left\|x-x_{n k}\right\|<\infty
$$

