GROUP THEORY Summer 2003
 SOLUTIONS TO SOME PROBLEMS

Warning:These solutions may contain errors!!

PREPARED BY SULEYMAN ULUSOY

PROBLEM 1. Suppose that G is a group of even order. Prove that G contains at least one element $a \neq e$ such that $a . a=e$.

SOLUTION. Let $|G|$ denote the number of elements in the group G. Suppose there exists no $a \in G$ such that $a . a=e \Rightarrow a \neq a^{-1}$. Then, we have

$$
G-\{e\}=\bigcup_{a \in(G-\{e\})}\left\{a, a^{-1}\right\} .
$$

Observe that $\left\{a, a^{-1}\right\} \cap\left\{b, b^{-1}\right\} \neq \emptyset \Rightarrow\left(a=b\right.$ or $\left.a=b^{-1}\right)$ or ($a^{-1}=b$ or $\left.a^{-1}=b^{-1}\right)$. Thus, in this case we have, $\left\{a, a^{-1}\right\}=\left\{b, b^{-1}\right\}$ and by assumption $\left|\left\{a, a^{-1}\right\}\right|=2$. Then, we have the following disjoint union

$$
G-\{e\}=\left\{a_{1}, a_{1}^{-1}\right\} \cup \ldots \cup\left\{a_{k}, a_{k}^{-1}\right\} .
$$

This implies that $|G-\{e\}|$ is an even number so that $|G|$ is an odd number, which is a contradiction.

PROBLEM 2. Let G be a group such that every element of G is its own inverse. i.e. $a . a=e$ for all $a \in G$. Prove that G is abelian.

SOLUTION. We need to show that $a . b=b . a$ for all $a, b \in G$. By assumption $a^{2}=$ $b^{2}=e=(a . b)^{2}$. We have $a b=a^{-1} b^{-1}$ as $a=a^{-1}$ and $b=b^{-1}$. This gives,

$$
a \cdot b=a^{-1} \cdot b^{-1}=(b \cdot a)^{-1}=b \cdot a .
$$

Since a, b are arbitrary, we conclude that G is abelian.
PROBLEM 3. Let p, q be distinct primes such that $p<q$ and $q \neq 1(\bmod p)$. Let G be a any group of order $p q$. Show that G must be a cyclic group.

SOLUTION. Let n_{p} be the number of Sylow p subgroups of G and let n_{q} be the number of sylow q subgroups of G. Then we have $n_{p} \mid q \Rightarrow n_{p} \in\{1, q\}$. Since $q \neq 1(\bmod p)$ we conclude that $n_{p}=1$. Similarly, $n_{q} \mid p \Rightarrow n_{q} \in\{1, p\}$. If $n_{q}=p$ then $p \equiv 1(\bmod q) \Rightarrow q<p$. But this is not possible so that $n_{q}=1$.
Let P be the unique sylow p subgroup of G and let Q be the unique sylow q subgroup of G. Now, $P \cap Q=\{e\}$. Since $|P \cap Q|||P|=p$ and $| P \cap Q||Q|=q \Rightarrow| P \cap Q \mid=1$. Thus, we have $P \unlhd G, Q \unlhd G$ and $G=P Q \Rightarrow G=P \times Q \cong Z_{p} \times Z_{q}$.

