Part a) Find the Fourier Series for the functions f(x)=x^2, x^3, and x^4 on the interval [-Pi,Pi]

In[1]:=
  f[x_] := x^2

In[2]:=

  a[0] := (1/(2*Pi)) Integrate[f[x], {x,-Pi,Pi}]

In[3]:=

  a[0]

Out[3]=

    2
  Pi
  ---
   3

This is the value of the constant term, a0.

In[4]:=

  TrigId = {Cos[Pi n_] -> (-1)^n, Sin[Pi n_] -> 0}

Out[4]=

                       n
  {Cos[Pi (n_)] -> (-1) , Sin[Pi (n_)] -> 0}

In[5]:=

  a[m_] := (2/(2*Pi)) Integrate[f[x]*Cos[2 m Pi x/(2*Pi)], {x,-Pi,Pi}]

In[6]:=

  a[m] /. TrigId

Out[6]=

        m
  4 (-1)
  -------
     2
    m

These are the coefficients am--the coefficients of the Cosine terms.

In[7]:=

  b[n_] := (2/(2*Pi)) Integrate[f[x]*Sin[2 n Pi x/(2*Pi)], {x,-Pi,Pi}]

In[8]:=

  b[n]

Out[8]=

  0

These coefficients are all zero because x^2 is even and Sin(x) is odd.

In[9]:=

  Clear[FullSeries]

Here is the F Series for x^2 on [-Pi,Pi].

In[10]:=

  FullSeries[x_,N_] := (Pi^2/3) + \
        Sum[((4*(-1)^m)/(m^2))Cos[2 Pi m x/(2*Pi)],{m,1,N}] 

In[11]:=

  Plot[{FullSeries[x,1], f[x]}, {x,-Pi, Pi}]

Out[12]=

  -Graphics-

In[13]:=

  Plot[{FullSeries[x,3], f[x]}, {x,-Pi, Pi}]

Out[14]=

  -Graphics-

In[15]:=

  Plot[{FullSeries[x,10], f[x]}, {x,-Pi, Pi}]

Out[16]=

  -Graphics-

Now, let's find the Fourier Series for x^3 over the interval [-Pi, Pi].

In[17]:=

  f[x_] := x^3

In[18]:=

  a[0] := (1/(2*Pi)) Integrate[f[x], {x,-Pi,Pi}]

In[19]:=

  a[0]

Out[19]=

  0

The constant term a0 is 0 because 1 is even and x^3 is odd.

In[20]:=

  a[m_] := (2/(2*Pi)) Integrate[f[x]*Cos[2 m Pi x/(2*Pi)], {x,-Pi,Pi}]

In[21]:=

  a[m]

Out[21]=

  0

All of the Cosine terms are zero because Cosine(x) is even and x^3 is odd.

In[22]:=

  b[n_] := (2/(2*Pi)) Integrate[f[x]*Sin[2 n Pi x/(2*Pi)], {x,-Pi,Pi}]

In[23]:=

  b[n] /. TrigId

Out[23]=

        n            n  3   3          n            n  3   3
  6 (-1)  n Pi - (-1)  n  Pi    -6 (-1)  n Pi + (-1)  n  Pi
  --------------------------- - ----------------------------
               4                              4
              n                              n
  ----------------------------------------------------------
                              Pi

In[24]:=

  Simplify[%]

Out[24]=

        n       2   2
  2 (-1)  (6 - n  Pi )
  --------------------
            3
           n

The full F series will consist entirely of Sine terms with the coefficients bn as above.

In[25]:=

  Clear[FullSeries]

Here is the F Series for x^3 on [-Pi,Pi].

In[26]:=

  FullSeries[x_,N_] := 
        Sum[((2(-1)^n)(6-n^2*Pi^2)/(n^3))Sin[2 Pi n x/(2*Pi)],{n,1,N}] 

In[27]:=

  Plot[{FullSeries[x,1], f[x]}, {x,-Pi, Pi}]

Out[28]=

  -Graphics-

In[29]:=

  Plot[{FullSeries[x,3], f[x]}, {x,-Pi, Pi}]

Out[30]=

  -Graphics-

In[31]:=

  Plot[{FullSeries[x,10], f[x]}, {x,-Pi, Pi}]

Out[32]=

  -Graphics-

Now, let's find the Fourier Series for x^4 over the interval [-Pi, Pi].

In[33]:=

  f[x_] := x^4

In[34]:=

  a[0] := (1/(2*Pi)) Integrate[f[x], {x,-Pi,Pi}]

In[35]:=

  a[0]

Out[35]=

    4
  Pi
  ---
   5

This is the value of the constant term, a0.

In[36]:=

  a[m_] := (2/(2*Pi)) Integrate[f[x]*Cos[2 m Pi x/(2*Pi)], {x,-Pi,Pi}]

In[37]:=

  Simplify[a[m] /. TrigId]

Out[37]=

        m        2   2
  8 (-1)  (-6 + m  Pi )
  ---------------------
            4
           m

These are the coefficients am--the coefficients of the Cosine terms.

In[38]:=

  b[n_] := (2/(2*Pi)) Integrate[f[x]*Sin[2 n Pi x/(2*Pi)], {x,-Pi,Pi}]

In[39]:=

  b[n]

Out[39]=

  0

These coefficients are all zero because x^4 is even and Sin(x) is odd.

In[40]:=

  Clear[FullSeries]

Here is the F Series for x^4 on [-Pi,Pi].

In[41]:=

  FullSeries[x_,N_] := (Pi^4/5) + \
        Sum[((8*(-1)^m)(-6+m^2 Pi^2)/(m^4))Cos[2 Pi m x/(2*Pi)],{m,1,N}] 

Up to Solution to Problem IV.5