
REAL ANALYSIS LECTURE NOTES:

SHORT REVIEW OF METRICS, NORMS, AND CONVERGENCE

CHRISTOPHER HEIL

In these notes we will give a brief review of basic notions and terminology for metrics,
norms, and convergence.

1. Metrics and Convergence

1.1. The Definition of a Metric. A metric defines a notion of distance between points in
a set.

Definition 1.1 (Metric Space). Let X be a set. A metric on X is a function d: X×X → R
such that:

(a) 0 ≤ d(f, g) < ∞ for all f, g ∈ X,

(b) d(f, g) = 0 if and only if f = g,

(c) d(f, g) = d(g, f) for all f, g ∈ X,

(d) The Triangle Inequality: for all f, g, h ∈ X we have

d(f, h) ≤ d(f, g) + d(g, h).

In this case, X is a called a metric space. We refer to the number d(f, g) as the distance

from f to g. ♦

A metric space need not be a vector space, although this will be true of many of the metric
spaces that we will encounter.

1.2. An Example. In a finite measure space, the definition of convergence in measure can
be reformulated in terms of a metric.

Exercise 1.2. Suppose that (X,Σ, µ) is a finite measure space, and let M be the set of all
measurable complex-valued functions on X:

M = {f : X → C : f is measurable}.

For f, g ∈ M, define

d(f, g) =

∫

|f − g|

1 + |f − g|
dµ.

Show that d is a metric on M if we identify functions that are equal a.e., and show that

fn
m
→ f ⇐⇒ d(fn, f) → 0.

Hint: The function x
x+1

is an increasing function of x. ♦
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2 SHORT REVIEW OF METRICS, NORMS, AND CONVERGENCE

1.3. Convergence. Once we have a notion of distance, we have a corresponding notion of
convergence.

Definition 1.3 (Convergent and Cauchy sequences). Let X be a metric space with metric
d, and let {fn}n∈N be a sequence of elements of X.

(a) We say that {fn}n∈N converges to f ∈ X if lim
n→∞

d(fn, f) = 0, i.e., if

∀ ε > 0, ∃N > 0, ∀n ≥ N, d(fn, f) < ε.

In this case, we write lim
n→∞

fn = f or fn → f.

(b) We say that {fn}n∈N is Cauchy if

∀ ε > 0, ∃N > 0, ∀m,n ≥ N, d(fm, fn) < ε. ♦

1.4. Open and Closed Sets.

Definition 1.4 (Open and Closed Sets). Let X be a metric space.

(a) The open ball of radius r centered at f is

Br(f) =
{

g ∈ X : d(f, g) < r
}

.

(b) A subset U of X is open if for each f ∈ U there exists some r > 0 such that Br(f) ⊆ U.

(c) A subset F of X is closed if its complement X\F is open. ♦

We can equivalently characterize closed sets as being those sets that contain all of their
limits.

Lemma 1.5. If E is a subset of a metric space X then the following two statements are
equivalent.

(a) E is closed.

(b) E contains every limit of points of E, i.e.,

fn ∈ E and fn → f ∈ X =⇒ f ∈ E. ♦

1.5. Complete Metric Spaces. Here is an easy but important exercise.

Exercise 1.6. Prove that if X is a metric space, then every convergent sequence in X is
Cauchy. ♦

In general, however, a Cauchy sequence need not be convergent (see Exercise 3.2 for an
example). We give a name to spaces in which every Cauchy sequence does converge.

Definition 1.7 (Complete Metric Space). If every Cauchy sequence in a metric space X

has the property that it converges to an element of X, then X is said to be complete. ♦
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2. Norms and Banach Spaces

A norm provides us with a notion of the length of a vector in a vector space. In these
notes, we will take our vector spaces to be over the complex field C, but only minor changes
are needed if we instead assume that they are over the real field R.

2.1. The Definition of a Norm.

Definition 2.1 (Seminorms and Norms). Let X be a vector space over the field C of complex
scalars. A seminorm on X is a function ‖ · ‖ : X → R such that for all f, g ∈ X and all
scalars c ∈ C we have:

(a) 0 ≤ ‖f‖ < ∞,

(b) ‖cf‖ = |c| ‖f‖, and

(c) The Triangle Inequality: ‖f + g‖ ≤ ‖f‖ + ‖g‖.

A seminorm is a norm if we also have:

(d) ‖f‖ = 0 if and only if f = 0.

A vector space X together with a norm ‖ · ‖ is called a normed linear space or simply a
normed space. ♦

Note that if S is a subspace of a normed space X, then S is itself a normed space with
respect to the norm on X (restricted to S).

2.2. The Induced Metric. The following exercise shows that all normed spaces are metric
spaces. In particular, the notions of convergent and Cauchy sequences apply in any normed
space.

Exercise 2.2. If X is a normed space, then

d(f, g) = ‖f − g‖

defines a metric on X, called the induced metric. ♦

Not every metric is induced from a norm; the metric in Exercise 1.2 corresponding to
convergence in measure is an example.

2.3. Some Properties of Norms.

Exercise 2.3. Show that if X is a normed linear space, then the following statements hold.

(a) Reverse Triangle Inequality:
∣

∣‖f‖ − ‖g‖
∣

∣ ≤ ‖f − g‖.

(b) Continuity of the norm: fn → f =⇒ ‖fn‖ → ‖f‖.

(c) Continuity of vector addition: fn → f and gn → g =⇒ fn + gn → f + g.

(d) Continuity of scalar multiplication: fn → f and cn → c =⇒ cnfn → cf.

(e) Boundedness of convergent sequences: if {fn}n∈N is convergent then sup ‖fn‖ < ∞.

(f) Boundedness of Cauchy sequences: if {fn}n∈N is Cauchy then sup ‖fn‖ < ∞. ♦
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2.4. Banach Spaces. We give a special name to normed spaces that are complete.

Definition 2.4 (Banach Space). A normed linear space X is called a Banach space if it is
complete with respect to the induced metric, i.e., if every Cauchy sequence in X converges
to an element of X. ♦

Thus, the terms “Banach space” and “complete normed space” are interchangeable.

Example 2.5. The standard norm on the complex plane C is absolute value |·|. An important
fact is that C is a Banach space with respect to absolute value. ♦

The following exercise states that a subspace of a Banach space is itself a Banach space if
and only if it is closed.

Exercise 2.6. Let M be a subspace of a Banach space X. Show that M is a normed space
using the norm of X restricted to M, and show that

M is a Banach space ⇐⇒ M is closed. ♦

All subspaces of a finite-dimensional normed space are closed. However, subspaces of
an infinite-dimensional normed space need not be closed. We will see some examples in
Section 5.

3. Examples of Normed Spaces: ℓp and c00

We will give a few examples of Banach spaces and complete metric spaces. We begin with
the ℓp spaces on countable index sets.

Definition 3.1. Let I be a finite or countably infinite index sequence.

(a) If 1 ≤ p < ∞, then ℓp(I) consists of all sequences of scalars x = (xk)k∈I such that

‖x‖p = ‖(xk)k∈I‖p =

(

∑

k∈I

|xk|
p

)1/p

< ∞.

(b) For p = ∞, the space ℓ∞(I) consists of all sequences of scalars x = (xk)k∈I such that

‖x‖∞ = ‖(xk)k∈I‖∞ = sup
k∈I

|xk| < ∞.

If I = N, then we write simply ℓp instead of ℓp(N).
If I = {1, . . . , d}, then ℓp(I) = Cd, and in this case we refer to ℓp(I) as “Cd under the ℓp

norm.” The ℓ2 norm on Cd is called the Euclidean norm. ♦

It is a fact that each ℓp space for 1 ≤ p ≤ ∞ is a normed space. This is easy to prove
for p = 1 and p = ∞. However, it is not trivial to prove the Triangle Inequality when
1 < p < ∞ — for this you need a result called Hölder’s Inequality. For these notes we will
assume that ‖ · ‖p is a norm on ℓp when 1 ≤ p ≤ ∞. The following exercise addresses the
issue of completeness.
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Exercise 3.2. Given 1 ≤ p ≤ ∞, prove that ℓp is complete.
Hints: Suppose that {xn}n∈N is a Cauchy sequence in ℓp, and write xn = (xn(1), xn(2), . . . ).

Then show that for each fixed k we have that {xn(k)}n∈N is a Cauchy sequence of scalars.
Since C is complete, this sequence of scalars converges, say yk = limk→∞ xn(k). Thus, for each
k, the kth component of xn converges to the kth component of y; this is called componentwise

convergence.
Now we have a candidate sequence y = (y1, y2, . . . ) for the limit of {xn}n∈N. Use the fact

that {xn}n∈N is Cauchy in ℓp together with the componentwise convergence to show that
‖x − xn‖p → 0. ♦

3.1. An Incomplete Space. Let c00 denote the set of all sequences that contain only finitely
many nonzero components:

c00 =
{

x = (x1, . . . , xN , 0, 0, . . . ) : N > 0, x1, . . . , xN ∈ C
}

.

The vectors in c00 are sometimes called finite sequences because they contain at most finitely
many nonzero components. If we fix a particular value of p, then we have c00 ( ℓp, so c00

is a normed space with respect to ‖ · ‖p. However, according to the following exercise, c00 is
not a closed subspace of ℓp and consequently is not complete.

Exercise 3.3. Fix 1 ≤ p ≤ ∞, and let x =
(

2−k
)

k∈N
. Observe that x ∈ ℓp, and find a

sequence of vectors {xn}n∈N in c00 such that ‖x − xn‖p → 0 as n → ∞. Use this to show
that c00 is not a closed subset of ℓp, and that c00 is not a Banach space with respect to the
norm ‖ · ‖p. ♦

4. Function Space Examples of Normed Spaces

We will give some examples of Banach spaces of functions on R. The support of a function
is the closure of the set where it is nonzero, i.e.,

supp(f) = {x ∈ R : f(x) 6= 0}.

Since supp(f) is closed, it is compact if and only if it is bounded. Thus, a function has
compact support if and only if it is zero outside of some finite interval.

Exercise 4.1. (a) Let Fb(R) denote the space of bounded functions f : R → C. Show that
Fb(R) is a Banach space with respect to the uniform norm

‖f‖u = sup
t∈R

|f(t)|.

(b) Let Cb(R) denote the space of continuous, bounded functions f : R → C. Show that
Cb(R) is a closed subspace of Fb(R) with respect to the uniform norm, and hence is itself a
Banach space.

(c) Let C0(R) be the subspace of Cb(R) consisting of functions that “decay to zero at
infinity.” Specifically,

C0(R) =
{

f ∈ Cb(R) : lim
|t|→∞

f(t) = 0
}

.
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Prove that C0(R) is a closed subspace of Cb(R), and hence is a Banach space with respect
to the uniform norm. ♦

Convergence with respect to the uniform norm is called uniform convergence, i.e., we say
that fn → f uniformly if ‖f − fn‖u → 0 as n → ∞.

4.1. An Incomplete Space. Consider the space Cc(R) that consists of all continuous func-
tions with compact support:

Cc(R) =
{

f ∈ Cb(R) : supp(f) is compact
}

(4.1)

This is a subspace of C0(R), so it is a normed space with respect to the uniform norm.
However, the following exercise shows that it is not a Banach space.

Exercise 4.2. Let g(x) = e−|x|, and observe that g belongs to C0(R) but not Cc(R). For
each integer n > 0, define a compactly supported approximation to g by setting gn(x) = g(x)
for |x| ≤ n and gn(x) = 0 for |x| > n + 1, and let gn be linear on [n, n + 1] and [−n− 1,−n]
(see Figure 1). Prove that gn converges uniformly to g, and conclude that Cc(R) is not a
closed subspace of C0(R). Consequently Cc(R) is not complete with respect to the uniform
norm. In fact, show directly that {gn}n∈N is a Cauchy sequence in Cc(R), but also show that
this sequence cannot converge to any element of Cc(R). ♦

Figure 1. A function g and a compactly supported approximation gn.

4.2. Spaces of Differentiable Functions. We define some spaces of functions with higher-
order smoothness.

Exercise 4.3. Let Cm
b (R) be the space of all m-times differentiable functions on R each of

whose derivatives is bounded and continuous, i.e.,

Cm
b (R) =

{

f ∈ Cb(R) : f, f ′, . . . , f (m) ∈ Cb(R)
}

.

Show that Cm
b (R) is a Banach space with respect to the norm

‖f‖Cm

b
= ‖f‖u + ‖f ′‖u + · · · + ‖f (m)‖u.
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5. Dense Subspaces

Definition 5.1. Let X be a normed linear space. We say that a subset S of X is dense in
X if every element of X is a limit of points of S, i.e., if for each f ∈ X there exist fn ∈ S

such that fn → f. ♦

For example, the set Q + iQ of all complex numbers whose real and imaginary parts
are both rational is dense in C. However, Q + iQ is not a subspace of the vector space C
(implicitly taken with the scalar field to be C) because it is not closed under multiplication
by elements of C.

The only dense subspace of C is C itself. In finite-dimensional spaces, there are no proper
dense subspaces. There do exist examples in infinite-dimensional spaces, some are listed in
the next exercise.

Exercise 5.2. (a) Fix 1 ≤ p ≤ ∞. Prove that the space c00 introduced in Exercise 3.2 is a
subspace of ℓp that is not closed (with respect to the ℓp-norm). Prove that c00 is dense in
ℓp(N) if p < ∞, but that it is not dense in ℓ∞.

(b) Define

c0 =
{

x = (xk)
∞
k=1 : lim

k→∞
xk = 0

}

.

Prove c0 is a closed subspace of ℓ∞(N), and that c00 is dense in c0 with respect to the
ℓ∞-norm. ♦

Exercise 5.3. Show that the space Cc(R) introduced in equation (4.1) is a proper dense
subspace of C0(R) (with respect to the uniform norm).

Hint: Modify the idea of Exercise 4.2. ♦


