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ABSTRACT

The Weyl correspondence is a convenient way to define a broad class of time-frequency localization opera-
tors. Given a region Ω in the time-frequency plane R2 and given an appropriate µ, the Weyl correspondence
can be used to construct an operator L(Ω, µ) which essentially localizes the time-frequency content of a
signal on Ω. Different choices of µ provide different interpretations of localization. Empirically, each such
localization operator has the following singular value structure: there are several singular values close to
1, followed by a sharp plunge in values, with a final asymptotic decay to zero. The exact quantification of
these qualitative observations is known only for a few specific choices of Ω and µ. In this paper we announce
a general result which bounds the asymptotic decay rate of the singular values of any L(Ω, µ) in terms
of integrals of |χΩ ∗ µ̃|2 and |(χΩ ∗ µ̃)∧|2 outside squares of increasing radius, where µ̃(a, b) = µ(−a,−b).
More generally, this result applies to all operators L(σ, µ) allowing window functions σ in place of the
characteristic functions χ

Ω. We discuss the motivation and implications of this result. We also sketch the
philosophy of proof, which involves the construction of an approximating operator through the technology
of Gabor frames—overcomplete systems which allow basis-like expansions and Plancherel-like formulas,
but which are not bases and are not orthogonal systems.

Keywords: Cohen’s class, frames, Gabor systems, singular values, time-frequency localization, Weyl
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1. INTRODUCTION

Because of the uncertainty principle, there is no single, ideal time-frequency localization methodology. The
Weyl correspondence provides one convenient way to define a broad class of operators which “essentially”
localize signals on a domain Ω in the time-frequency plane R2. Starting with a region Ω ⊂ R2 and
an appropriate function µ, the Weyl correspondence can be used to define an operator L(Ω, µ) which
maps the space L2(R), consisting of all square-integrable functions on R, into itself. Details of the
Weyl correspondence are given in Section 2. Briefly, the process required to construct L(Ω, µ) begins
with the joint time-frequency distribution W (f, g) known as the Wigner distribution. Then W (f, g) is
convolved with µ to obtain Wµ(f, g), a joint time-frequency distribution in the Cohen class. Finally



L(Ω, µ) is constructed from Wµ(f, g). Cohen refers to the Fourier transform
∧

µ of µ as the kernel of the
time-frequency distribution Wµ(f, g).

Each L(Ω, µ) “localizes” functions on Ω. With Ω fixed, each choice of µ gives a different interpretation
of localization. If L(Ω, µ) is self-adjoint then its maximal eigenvalue represents the highest degree of
cencentration possible on Ω (with respect to that µ). The corresponding eigenfunction is that square-
integrable function whose time-frequency content is most concentrated on Ω. If L(Ω, µ) is not self-adjoint
then the notion of concentration can be formulated in terms of the singular values and singular functions
of L(Ω, µ).

The problem we address in this note was first posed by Flandrin:7 determine the singular values and
singular functions of the localization operator L(Ω, µ).
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Figure 1. Plot of the eigenvalues of L(D,µ1) for D the disk of area 50 and µ1(a, b) = e−(a2+b
2).
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Figure 2. Plot of the eigenvalues of L(D,µ2) for D the disk of area 50 and µ2 = δ.

Figures 1 and 2 display features typical of the singular values of L(Ω, µ). In both plots the region is Ω = D,
the disk of area 50 centered at the origin. Figures 1 and 2 differ in their choice of µ. However, for both
of these particular choices µ1 and µ2, the operators L(D,µ1) and L(D,µ2) are self-adjoint. Therefore
Figures 1 and 2 plot the eigenvalues of L(D,µ1) and L(D,µ2), respectively (the singular values of a



self-adjoint operator are simply the absolute values of the eigenvalues).

For Figure 1, we have selected µ1 to be the two-dimensional Gaussian function, µ1(a, b) = e−(a2+b2). The
corresponding Cohen class time-frequency distribution Wµ1

(f, g) is called the spectrogram. The eigenvalues
and eigenfunctions of the localization operator L(Ω, µ1) were first determined by Daubechies for circular
or elliptical domains Ω.3 Actually, Daubechies formulated this operator in terms of coherent states, a point
of view beautifully exposited in her recent monograph.4 A previous paper16 reinterpreted this operator in
the light of the Weyl correspondence, and extended the analysis of its eigenvalues and eigenfunctions to
any bounded, measurable domain Ω.

For Figure 2, µ2 = δ, the point mass at the origin. The corresponding Cohen class time-frequency distri-
bution Wµ2

(f, g) is simply the Wigner distribution W (f, g). The eigenvalue and eigenfunction structure
of L(Ω, µ2) has been analyzed for all bounded, measurable domains Ω with piecewise once-differentiable
boundaries.17

Before proceeding, we must remark on the obvious similarity of Figure 1 to plots arising in the classic energy
concentration problem solved by Landau, Pollack, and Slepian.11,12,19 The problem there was as follows:
given a timespan [−T, T ] and frequency band [−S, S], determine that function f which is bandlimited
to [−S, S] and which concentrates the greatest possible energy into the timespan [−T, T ]. The elegant
solution is that f is the eigenfunction corresponding to the maximal eigenvalue of the positive operator

BAB, where Ah = h · χ[−T,T ] (timepass filtering) and Bh = (
∧

h · χ[−S,S])
∨ (bandpass filtering). A plot of

the eigenvalues of BAB is remarkably similar to Figure 1. Flandrin7 has shown that the operator BAB
can be realized in terms of the Weyl correspondence: BAB = L∗L where L = L(Ω, µ) with Ω the rectangle
[−T, T ]× [−S, S] and µ(a, b) = eπiab. The Cohen class time-frequency distribution Wµ(f, g) corresponding
to this µ is known as the Rihaczek distribution.

Figures 1 and 2 are typical of those L(Ω, µ) which are self-adjoint. The singular value structure of non-
self-adjoint L(Ω, µ) is similar, although naturally the singular values are always positive. Empirically,
each singular value plot has the following behavior: several singular values cluster near 1 at the beginning,
followed by a sharp plunge in the values, with a final asymptotic decay to zero. We therefore desire answers
to the following questions, in terms of computable properties of Ω and µ:

(1) How many singular values lie near 1?

(2) What is the width of the plunge region?

(3) What is the asymptotic decay rate?

(4) What are the singular functions?

With answers to these questions in hand we could, for example, obtain an implementable time-frequency
filter by projecting signals onto the finite-dimensional subspace of L2(R) spanned by the principal sin-
gular functions of L(Ω, µ). A procedure along these lines has been adopted by Hlawatsch, Kozek and
Krattenthaler.10

The answers to questions 1–4 are known only for the special cases already described above: (a) the

spectrogram case, where µ(a, b) = e−(a2+b2), with results known for any bounded, measurable domain Ω;
(b) the Wigner case, where µ is the point mass δ, with results known for any bounded, measurable domain
Ω with piecewise differentiable boundary; and (c) the Rihaczek case, where µ(a, b) = eπiab, with results
known if Ω is a rectangle [−T, T ] × [−S, S].



In this note, we announce a new, general result which applies to arbitrary L(Ω, µ). The price is that we
obtain information on only one of the four questions: question 3, the asymptotic decay rate of the singular
values. We are hopeful that our technique will yield insights into the other questions. We have already
shown that that this technique leads to other interesting results; in particular, we have an improvement
of the Calderón–Vaillancourt Theorem, which gives sufficient conditions for the operator L(σ, µ) to be
bounded, where L(σ, µ) is the generalization of L(Ω, µ) allowing a window function σ to be used in place
of the cutoff function χ

Ω. Full details of the proof of the asymptotic decay rate theorem and the statement
and proof of the Calderón–Vaillancourt improvement will appear in a forthcoming journal article.9

Stated in terms of the general operator L(σ, µ) allowing window functions σ, our asymptotic decay rate
result is as follows.

Theorem 1. Let σ be a square-integrable function on R2, and let µ be such that
∧

µ is a bounded function

on R2. Set

F (n) =

∫∫

R2\Bn

|(σ ∗ µ̃)(p, q)|2 dp dq +

∫∫

R2\Bn

|(σ ∗ µ̃)∧(p, q)|2 dp dq + e−
π
8 n2

,

where µ̃(a, b) = µ(−a,−b) and Bn is the box Bn = [−n/4, n/4]× [−n/4, n/4]. Then there is a constant C
so that the singular values sn of L(σ, µ) satisfy

sn ≤ C

(

F
(

(n/8)1/2
)

n

)1/2

.

Thus, knowledge of the decay of σ ∗ µ̃ and (σ ∗ µ̃)∧ leads to knowledge of the decay of the singular values
of L(σ, µ).

Example 1. Consider the spectrogram case: µ(a, b) = e−(a2+b2). If σ = χ
Ω where Ω is any bounded,

measurable domain, then both (σ ∗ µ̃)(p, q) and (σ ∗ µ̃)∧(p, q) have quadratic exponential decay in both p
and q.9 Theorem 1 then yields quadratic exponential decay of the singular values of L(σ, µ). This improves
known results.16

Example 2. Consider next the Wigner case: µ = δ. If Ω is bounded with piecewise differentiable
boundary, then Theorem 1 leads to a decay rate for the singular values of only O(n−3/4).9 This result is
sharp if Ω is an annulus.17

Example 3. Finally, consider the Rihaczek case: µ(a, b) = eπiab. With Ω the rectangle [−T, T ]× [−S, S],
Theorem 1 leads only to a decay rate for the singular values of O(n−3/4).9 Yet it is known that the decay
rate is far quicker, at least O(n−2n).11

Thus Theorem 1 is sharp in some cases but not in others.

Full details of the proof of Theorem 1 will appear elsewhere.9 Here we will be content to briefly sketch
the philosophy of the proof and to point out its novelty: we bring to bear on this time-frequency problem
a time-frequency technique whose roots reach back to Duffin and Schaeffer,5 but which has seen limited
application. That technique is the use of Gabor frames. In general, frames provide an alternative to
bases. Whether they are practical or convenient depends on the application. In time-frequency analysis,



the Balian–Low theorem1 imposes a strict limitation on the sorts of functions available to generate Gabor

bases, i.e., bases constructed from a single function g by time-frequency shifts. The Balian–Low Theorem
implies that if g is continuous and has even moderate decay at infinity then {e2πibnxg(x + am)}m,n∈Z

cannot be an orthonormal basis for L2(R), or even merely an unconditional basis. However, by relaxing
the requirements of orthogonality and unique decompositions, we can obtain collections {e2πibnxg(x+am)}
with well-behaved g which do form frames. These prove sufficient to our need.

The remainder of this paper provides a sketch of how frames play a role in proving Theorem 1. First,
Section 2 collects the necessary machinery on the Weyl correspondence. Section 3 introduces frames,
especially those formed via time-frequency shifts of a single g. Finally, Section 4 indicates the connection—
how Gabor frames can be used with the Weyl correspondence.

2. THE WEYL CORRESPONDENCE

We use the standard energy norm for signals f in L2(R), the space of all square-integrable functions on
the real line R. This is defined by ‖f‖ = (

∫

|f(t)|2 dt)1/2. The inner product of two signals f and g is

〈f, g〉 =
∫

f(t) g(t)dt, the overbar denoting complex conjugation.

The time-frequency shift of a signal f by (a, b) is the function ρ(a, b)f defined by

ρ(a, b)f(t) = eπiab e2πibt f(t + a).

The cross ambiguity function A(f, g) of two signals f and g is the function defined on the time-frequency
plane R2 by

A(f, g)(p, q) = 〈ρ(p, q)f, g〉 =

∫

eπipq e2πiqt f(t + p) g(t)dt

=

∫

e2πiqs f(s + p/2) g(s− p/2)ds.

Thus, the ambiguity function is a time-frequency cross-correlation between the two signals. If f , g ∈ L2(R)
then A(f, g) is a bounded, square-integrable function on R2.

The Wigner distribution is the two-dimensional Fourier transform of the cross-ambiguity function. It is a
function W (f, g) defined on the time-frequency plane R2, and can be written

W (f, g)(p, q) = (A(f, g))∧(p, q) =

∫

e−2πisp f(q + s/2) g(q − s/2)ds.

Therefore, the Wigner distribution can be interpreted as a time-varying spectrum. If f , g ∈ L2(R) then
W (f, g) is a bounded and square-integrable function on R2.

There are many other possible ways to obtain time-varying spectra. A broad class of these are the time-
frequency distributions Wµ(f, g) in Cohen’s class. Cohen’s survey paper2 contains an excellent discussion
of the definitions, properties, and uses of these distributions. To obtain these we take a µ satisfying certain
conditions, and obtain Wµ(f, g) by convolving the Wigner distribution W (f, g) with µ:

Wµ(f, g)(p, q) = (W (f, g) ∗ µ)(p, q) =

∫∫

W (f, g)(a, b) µ(p − a, q − b) da db.



A relevant fact is that the kernel
∧

µ always has the property that it is a bounded function. However, µ
itself need not be realizable as a function. For example, we may take µ to be the point mass δ; this is
not a function, but its Fourier transform is the function which is identically 1. Although µ need not be
a function, the convolution of W (f, g) with µ will always produce a function Wµ(f, g) which is square-

integrable. For, if we begin on the Fourier transform side, we know that the inverse Fourier transform
∨

µ
is a bounded function. Therefore A(f, g) · ∨

µ is square-integrable, and hence

Wµ(f, g) = W (f, g) ∗ µ = (A(f, g) · ∨

µ)∧

is a well-defined, square-integrable function. Note that if µ = δ then Wµ(f, g) = W (f, g).

The Weyl correspondence uses the Wigner distribution to define a correspondence between functions
σ(p, q) and operators L(σ, µ) mapping L2(R) into itself. The operator L(σ, µ) is defined implicitly by the
equation

〈L(σ, µ)f, g〉 = 〈σ,Wµ(f, g)〉 =

∫∫

σ(p, q) Wµ(f, g)(p, q) dp dq.

A simple extension of a result of Pool14 shows that if σ ∈ L2(R2) then L(σ, µ) is a Hilbert–Schmidt operator
on L2(R). In particular, this means that the singular values sn of L(σ, µ) must be square-summable:
∑

|sn|2 < ∞.

Actually, each L(σ, µ) can be realized as L(σ̃, δ) for a new symbol σ̃ defined by

σ̃(a, b) = (σ ∗ µ̃)(a, b) =

∫∫

σ(p, q) µ̃(a − p, b − q) dp dq,

where µ̃(a, b) = µ(−a,−b).

3. FRAMES

Let {gmn}m,n∈Z be a collection of functions from L2(R). If {gmn} is a basis for L2(R) then we know, by
definition, that each signal f ∈ L2(R) can be written

f =
∑

m,n

cmn(f) gmn, (1)

for some unique choice of coefficients {cmn(f)}. We say that the basis is unconditional if the order of the
summation in (1) is unimportant: every reording of the sum also converges, in which case it must converge
to the same value.

An orthonormal basis has the further property that the functions are orthonormal: 〈gmn, gm′n′〉 = 0 unless
m = m′ and n = n′, in which case the inner product is 1. In this case, the coefficients cmn(f) are easy
to calculate: they are the inner products cmn(f) = 〈f, gmn〉. Moreover, we have for orthonormal bases a
Plancherel formula:

∑

m,n

|〈f, gmn〉|2 = ‖f‖2, all f ∈ L2(R).

An ideal situation for time-frequency analysis would be the existence of a function g which is well-localized
in both time and frequency and such that we can obtain an orthonormal basis {gmn} by simply letting
gmn be a time-frequency shift of g, i.e.,

gmn(x) = ρ(am, bn)g(x) = eπiabmn e2πibnx g(x + am), (2)



where a and b are fixed time and frequency step-sizes, respectively. However, the Balian–Low Theorem1

prevents this. Relaxing the requirement of orthogonality does not help: we cannot construct even an
unconditional basis {gmn} by the method in (2) unless g has poor localization properties, specifically, g

must satisfy ‖xg(x)‖ · ‖γ∧

g(γ)‖ = ∞.

However, we can choose to further relax the requirements on {gmn}. In addition to relaxing the orthogo-
nality requirement, we can also relax the requirement for uniqueness of the decompositions in (1). Merely
having computable decompositions may be sufficient, even if they are not unique. Frames provide a method
of achieving this.

Definition. A collection {gmn} of functions from L2(R) is a frame if there exist constants A, B > 0 such
that

A ‖f‖2 ≤
∑

m,n

|〈f, gmn〉|2 ≤ B ‖f‖2, all f ∈ L2(R). (3)

The numbers A, B are the frame bounds.

Thus, {gmn} is a frame if the pseudo-Plancherel formula (3) holds. All orthonormal bases are frames. In
fact, all unconditional bases which have the additional “norm boundedness” property

0 < inf
m,n

‖gmn‖ ≤ sup
m,n

‖gmn‖ < ∞ (4)

are frames. Conversely, any frame which is a basis is in fact an unconditional basis which satisfies the
boundedness criteria (4).

It is a remarkable fact that the pseudo-Plancherel formula (3) alone ensures that frames are practical
alternatives to bases. In fact, the pseudo-Plancherel formula implies the existence of decompositions of
signals with respect to the frame elements. (For details, we refer to Duffin and Schaeffer’s original paper,5

to Daubechies’ monograph,4 or to the research-tutorial of Heil and Walnut.8) If {gmn} is a frame, then
there will be a collection {g̃mn} which is its dual frame: the collection {g̃mn} will also be a frame (with
frame bounds 1/B, 1/A), and every f ∈ L2(R) can be written

f =
∑

m,n

cmn(f) gmn and f =
∑

m,n

c̃mn(f) g̃mn (5)

with
cmn(f) = 〈f, g̃mn〉 and c̃mn(f) = 〈f, gmn〉. (6)

Importantly, the summations in (5), with coefficients given by (6), converge unconditionally, i.e., they
converge regardless of the order of summation. However, the decompositions in (5) need not be unique:
there may exist other choices of coefficients which can be used to represent f as a combination of the frame
elements. Yet there always is at least one computable choice of coefficents, given by (6). Moreover, this
choice satisfies the pseudo-Plancherel formula (3), meaning that the energy of the signal f is equivalent
(up to lower and upper constant multiples) to the “energy” of the coefficients {cmn(f)} or {c̃mn(f)}.

Of special interest are collections {gmn} obtained as in (2) by time-frequency shifts of a single g. That
is, gmn(x) = ρ(am, bn)g for some fixed choice of a and b. We call such collections Gabor systems. If a
Gabor system is a frame then we call it simply a Gabor frame. (These are also known as windowed Fourier

transform frames or Weyl–Heisenberg frames.) In order to obtain a frame there must be restrictions on g,



a, and b. In particular, if the product ab of the time-frequency step sizes is too large, namely ab > 1, then
the Gabor system {gmn} constructed from any choice of g must be incomplete.15 Thus, a Gabor system
can be a frame only when ab ≤ 1 (this is not sufficient: additional requirements must be imposed on g). A
Gabor frame can be a basis only when ab = 1.15 A Gabor frame with ab < 1 is necessarily overcomplete,
in fact, it must contain infinitely many redundant elements. Yet it is the presence of those redundant
elements that allows us to construct Gabor frames whose elements have good time-frequency localization.

Example 4. Let G(x) = e−x2

, i.e., G is the Gaussian function, the function which has the best possible
simultaneous localization in time and frequency, the function which minimizes the quantity ‖xg(x)‖ ·
‖γ∧

g(γ)‖. Because of the Balian–Low Theorem, the Gabor system {Gmn} cannot be a basis for any choice
of a, b. However, it is easy to show4 that {Gmn} does form a Gabor frame when ab = 1/2. In fact, Seip
and Wallstén18 have shown that {Gmn} is a Gabor frame for any choice of a, b satisfying ab < 1.

4. FRAMES AND THE WEYL CORRESPONDENCE

The singular values sn(L) of a compact operator L on L2(R) are obtained from the eigenvalues λn(L∗L)
of the compact, positive, self-adjoint operator L∗L. With the eigenvalues λn(L∗L) arranged in order of
decreasing value (they are all nonnegative), we set:

sn(L) = λn(L∗L)1/2.

If L is self-adjoint then sn(L) = |λn(L)|. The operator L is Hilbert–Schmidt if the singular values are
square-summable. In this case we say that the Hilbert–Schmidt norm of L is

‖L‖HS =

( ∞
∑

n=1

sn(L)2
)1/2

.

The basic tool which allows us to estimate the singular values of L(σ, µ) is the following standard result,6

which is the extension to singular values of a result first proved by Weyl for eigenvalues of certain self-
adjoint operators.20

Lemma. If L1, L2 are compact operators then

sm+n+1(L1 + L2) ≤ sm+1(L1) + sn+1(L2).

If one of the operators L1 or L2 has finite rank, then that operator has only finitely many nonzero singular
values. This fact can be used to obtain an estimate for the “tail” of the singular values of the other
operator. In particular, if L is Hilbert–Schmidt and LN is an approximation of L with finite rank N , then

∞
∑

n=N+1

sn(L)2 ≤ ‖L − LN‖2
HS .

This tail estimate can be turned into an estimate on the individual singular values:9 there must be a
constant C such that

s2N (L) ≤ C
‖L − LN‖HS√

N
.



Thus, the problem of estimating the decay rate of the singular values of L = L(σ, µ) reduces to a problem
of finding a sequence of finite-rank approximations so that the Hilbert–Schmidt norms ‖L − LN‖HS are

computable. Here is where frames prove useful. Let G(x) = e−x2

be the Gaussian function. We know
then that the Gabor system {Gmn}m,n∈Z forms a frame for L2(R) if we choose the step sizes a, b so
that ab < 1. By applying properties of the cross ambiguity function, we can use this frame for L2(R) to
construct a frame for L2(R2): the collection

{A(Gkl, Gmn)}k,l,m,n∈Z

is a frame for L2(R2). Therefore, there is a dual frame, and it can be shown that it has the form

{A(G̃kl, G̃mn)}k,l,m,n∈Z

for some appropriate function G̃ ∈ L2(R). It is possible to specifically calculate G̃, but this is not necessary
for our purpose—we only need to know that it exists.

Now we construct a finite-rank approximation of L(σ, µ). Set σ̃ = σ∗µ̃ ∈ L2(R2). Then the decomposition
property of frames tells us that

σ̃ =
∑

k,l,m,n∈Z

〈σ̃, A(Gkl, Gmn)〉A(G̃kl, G̃mn),

with a pseudo-Plancherel relation between ‖σ̃‖2 and
∑ |〈σ̃, A(Gkl, Gmn)〉|2. By summing only finitely

many terms, we can obtain a function σ̃N which approximates σ̃: define

σ̃N =
∑

(k,l,m,n)∈DN

〈σ̃, A(Gkl, Gmn)〉A(G̃kl, G̃mn),

where DN = {(k, l,m, n) : |k|, |l|, |m|, |n| ≤ N}. It is then possible to translate this approximation of the
function σ̃ back to an approximating operator LN which is finite-rank. Moreover, the approximation in
the Hilbert–Schmidt norm is

‖L − LN‖HS = ‖σ̃ − σ̃N‖,
and we know that the square of the latter quantity is equivalent up to upper and lower constant factors
(via the pseudo-Plancherel formula) to

∑

(k,l,m,n)/∈DN

|〈σ̃, A(Gkl, Gmn)〉|2.

Now the problem becomes one of calculating these factors. We are helped by the fact that the cross
ambiguity functions A(Gkl, Gmn) are easy to calculate: they are essentially time and frequency shifted
two-dimensional Gaussian functions. Therefore they are each well-localized. After doing the calculations,
we complete a proof of Theorem 1.
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