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Section 3.2: A Standard Form for Second Order Linear Equations

The ideas of the previous section suggested a connection with
quadratic forms in analytic geometry.  If presented with a quadratic
equation in two variables, one could likely decide if the equation represented
a parabola, hyperbola, or ellipse in the plane.  However, if asked to draw a
graph of this conic section in the plane, one would start recalling that there
are several forms that are easy to draw:

ax2 + by2 = c2, and the special case x2 + y2 = c2,
ax2 - by2 = c2, and the special case x2 - y2 = c2,

or y - ax2 = 0 and x - by2 = 0.
These quadratic equations represent the familiar conic sections:

ellipses, hyperbolas and parabolas, respectively.  If a quadratic equation is
given that is not in these special forms, then one must recall procedures to
transform the equations algebraically into these standard forms.
Performing these algebraic procedures corresponds to a geometric idea of
translations and rotations.

For example, the equation
x2 - 3y2 - 8x + 30y = 60

represents a hyperbola. To draw the graph of the hyperbola, one
algebraically factors the equation or, geometrically, translates the axes:

(x - 4)2 - 3(y - 5)2 = 1.
Now, the response that this is a hyperbola with center {4,5} is expected.
More detailed information about the direction of the major and minor axes
could be made, but these are not notions that we will wish to carry over to
the process of getting second order partial differential equations into
standard forms.

There is another idea more appropriate.  Rather than keeping the
hyperbola in the Euclidean plane where it now has the equation

x2 - 3y2 = 1
in the translated form, think of this hyperbola in the cartesian plane, and
do not insist that the x axis and the y axis have the same scale.  In this
particular case, keep the x axis the same size and expand the y axis so that
every unit is the old unit multiplying by 3.  Algebraically, one commonly
writes that there are new coordinates {x',y'} related to the old coordinates by

x = x' , 3 y = y'.
The algebraic effect is that the equation is transformed into an equation in
{x',y'} coordinates:

x' 2  -  y' 2 = 1
Pay attention to the fact that it is now a mistake to carry over too

much of the geometric language for the form.  For example if the original
quadratic equation had been

x2 + 3y2 - 8x + 30y = 60
and we had translated axes to produce

x2 + 3y2  = 60,
and then rescaled the axes to get

x2 + y2 = 60
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we have not changed an ellipse into a circle for a circle is a geometric object
whose very definition involves the notion of distance.  The process of
changing the scale on the X axis and the Y axis certainly destroys the
entire notion of distance being the same in all directions.

Rather, the rescaling is an idea that is algebraically simplifying.

Before we pursue the idea of rescaling and translating in second
order partial differential equations in order to come up with standard
forms, we need to recall that there is also the troublesome need to rotate the
axis in order to get some quadratic forms into the standard one.  For
example, if the equation is

xy = 2,
we quickly recognize this as a quadratic equation.  Even more, we could
draw the graph.  If pushed, we would identify the resulting geometric
figure as a hyperbola.  We ask for more here since these geometric ideas
are more readily transformed into ideas about partial differential equations
if they are converted into algebraic ideas.  The question, then, is how do we
achieve the algebraic representation of the hyperbola in standard form?

One recalls from analytic geometry, or recognizes from simply
looking at the picture of the graph of the equation, that this hyperbola that
has been rotated out of standard form.  To see it in standard form, we must
rotate the axes. One forgets the details of how this rotation is performed, but
should know a reference to find the scheme.

Here is the rotation needed to remove the xy term in the equation
ax2 + bxy + cy2 + dx + ey + f = 0.

The new coordinates {x', y'} are given by





x'

y'  = 




 cos(α) sin(α)

-sin(α) cos(α)
 



x

y ,

where α is π/4 if a = c and is 
1
2 arctan( 

b
a-c ) if a ≠ c.  What is the same,





x

y  = 




cos(α) -sin(α)

sin(α)  cos(α)
 



x'

y' .

Thus, substitute x = x' cos(α) - y' sin(α) and y = x' sin(α) + y' cos(α) into the

equation, where α is as indicated above and the cross term, bxy, will
disappear.

Given a general quadratic, there are three things that need to be done
to get it into standard form: get rid of the xy terms, factor all the x terms
and the y terms separately, and rescale the axes so that the coefficients of
the x2 term and the y2 terms are the same.  Geometrically this corresponds,
as we have recalled, to a rotation, translation, and expansion, respectively.
From the geometric point of view, it does not matter which is done first: the
rotation and then the translation, or vice versa.  Algebraically, it is easier to
remove the xy terms first, for then the factoring is easier.

The purpose of the previous paragraphs recalling how to change
algebraic equations representing two dimensional conic sections into
standard form was to suggest that the same ideas carry over almost
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unchanged for the second degree partial differential equations.  The
techniques will change these equations into the standard forms for elliptic,
hyperbolic, or parabolic partial differential equations.  The purpose for
doing this is that the techniques for solving equations are different in the
three classes, if this is possible at all.  Even more, there are important
resemblances among the solutions of one class and striking differences
between the solutions of one class and those of another class.  The
remainder of these notes will be primarily concerned with finding solutions
to elliptic equations, but will discuss the standard form given by the
Laplacian

∇2u = 
∂2u

∂x2
 +  

∂2u

∂x2

If one has an elliptic equation that is not in the standard form of the
Laplacian, the purpose of the remainder of this section is to present
methods to change it into this form. The techniques are similar to those
used in the analytic geometry.  Having the standard form, one might then
solve the equation involving the Laplacian.  Finally, the solution should be
transformed back into the original coordinate system.

We will illustrate the procedure for transformation of a second order
equation into standard form.  Consider the equation

4 
∂2u

∂x2
 - 24  

∂2u

∂x∂y
  + 11  

∂2u

∂x2
  - 12 

∂u

∂x
 - 9 

∂u

∂y
 - 5u = 0.

We would like to transform the equation into the form
∇2 u  + cu = 0.

In the original equation, if we think of the equation as

a 
∂2u

∂x2
 + 2b  

∂2u

∂x∂y
  + c 

∂2u

∂y2
  + d  

∂u

∂x
 + e 

∂u

∂y
 + f u = 0.

Then, a = 4, b = -12, c = 11, so that b2 -  a c = 100 and the equation is
hyperbolic.  The transformations will be made in three steps which will
correspond to a rotation, a translation, and a rescaling in the earlier
discussion.

The first step is the introduction of new coordinates (ξ,η) by rotation of
axes so that in the transformed equation the mixed second partial
derivative does not appear.  Let





ξ

η
 = 





 cos(α) sin(α)

-sin(α) cos(α)
 



x

y

or,





x

y  = 




cos(α) -sin(α)

sin(α)  cos(α)
 




ξ

η
.

Using the chain rule,   
∂ 

∂x
 = cos(α) 

∂ 

∂ξ
 - sin(α) 

∂ 

∂η
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and  
∂ 

∂y
 = sin(α) 

∂ 

∂ξ
 + cos(α) 

∂ 

∂η
 .

It follows that

 
∂2 

∂x2
 = 

∂ 

∂x
 
∂ 

∂x
 = ( cos(α) 

∂ 

∂ξ
 - sin(α) 

∂ 

∂η
 )( cos(α) 

∂ 

∂ξ
 - sin(α) 

∂ 

∂η
 )

so that

 
∂2 

∂x2
  = cos2(α)  

∂2 

∂ξ2
 - 2 sin(α)cos(α)  

∂2 

∂ξ∂η
   + sin2(α)  

∂2 

∂η2
 .

In a similar manner,

 
∂2 

∂x ∂y
 =

sin(α) cos(α)  
∂2 

∂ξ2
 + (cos2(α) - sin2(α) )  

∂2 

∂ξ ∂η
 - sin(α)cos(α) 

∂2 

∂η2
 ,

and

 
∂2 

∂y
 = sin2(α)  

∂2 

∂ξ2
 + 2 sin(α) cos(α)  

∂2 

∂ξ ∂η
  + cos2(α)  

∂2 

∂η2
  .

The original equation described u as a function of x and y.  We now define v
as a function of ξ and η by   v(ξ,η) = u(x,y).  The variables ξ and η are related
to x and y as described by the rotation above.  Of course, we have not
specified α yet.  This comes next.

The equation satisfied by v is

[4c2  - 24sc + 11 s2]  
∂2v

∂ξ2
 + [14sc - 24(c2 - s2)]  

∂2v

∂ξ∂η

+ [ 4s2 + 24sc + 11 c2]  
∂2v

∂η2
  + [-12c - 9s ]  

∂v

∂ξ

+ [12s - 9c]  
∂v

∂η
 - 5 v,

where we have used the abbreviations s = sin(α)  and c = cos(α).  The

coefficient of the mixed partials will vanish if α is chosen so that

14sin(α)cos(α) - 24(cos2(α) - sin2(α)) = 0,
that is,

tan(2α) = 24/7.

This means sin(α) = 3/5 and cos(α) = 4/5.
After substitution of these values, the equation satisfied by v becomes

  
∂2v

∂ξ2
  - 4   

∂2v

∂η2
 + 3 

∂v

∂ξ
  + v = 0.

This special example, together with the foregoing discussions of
analytic geometry makes the following statement believable:  Every second
order partial differential equation with constant coefficients can be
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transformed into one in which mixed partials are absent.
We are now ready for the second step: to remove the first order term.

For economy of notation, let us assume that the given equation is already in
the form

  
∂2u

∂x2
  - 4  

∂2u

∂y2
 + 3 

∂u

∂x
  + u = 0.

Define v by
v(x,y) = e-βx u(x,y)  or  u(x,y) = eβx v(x,y),

where β  will be chosen so that the transformed equation will have the first
order derivative removed.  Differentiating u and substituting into the
equation we get that

  
∂2v

∂x2
  - 4 

∂2v

∂y2
 + (2β +3) 

∂v

∂x
  + (β2 + 3β + 1)v = 0.

If we choose β = - 3/2, we have

  
∂2v

∂x2
  - 4 

∂2v

∂y2
   - 

5
4 v = 0.

Notice that this transformation to achieve an equation lacking the first
derivative with respect to x is generally possible when the coefficient on the
second derivative with respect to x is not zero, and is otherwise impossible.
The same statements hold for derivatives with respect to y.

The final step is rescaling.  We choose variables ξ and η by

ξ = µ x and η = ν y, where µ and ν are chosen so that in the transformed

equation the coefficients of 
∂2v

∂ξ2
 ,  

∂2v

∂η2
 , and v are equal in absolute value.  We

have

  
∂2u

∂x2
 = µ2 

∂2v

∂ξ2
  and 

∂2u

∂y2
  = ν2 

∂2v

∂η2
 .

Our equation becomes

              µ2 
∂2v

∂ξ2
  + 4 ν2 

∂2v

∂η2
  - 

5
4 v = 0.

The condition that

µ2 = 4 ν2 = 
5
4

will be satisfied if µ = 
5

2  and ν = 
5

4  .  Then, we obtain the standard form

 ∇2v - v =  
∂2v

∂ξ2
  +  

∂2v

∂η2
  -  v = 0.

EXERCISES:
I.  Transform the following equations into standard form:

(a)  3 
∂2u

∂x2
  + 4  

∂2u

∂y2
  - u = 0.
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(b) 4 
∂2u

∂x2
  + 

∂2u

∂x∂y
 + 4  

∂2u

∂y2
  + u = 0.

(c)  
∂2u

∂x2
  +   

∂2u

∂y2
  + 3 

∂u

∂x
  - 4  

∂u

∂y
  + 25 u = 0.

(d)  
∂2u

∂x2
  - 3   

∂2u

∂y2
  + 2 

∂u

∂x
  -   

∂u

∂y
  +  u = 0.

(e)  
∂2u

∂x2
  - 2 

∂2u

∂x∂y
  +  

∂2u

∂y2
  + 3 u = 0.

II. Show that the equation
∂2u

∂x2
  -  

∂u

∂y
 +  γ u = f(x,y)

where γ is any constant, can be transformed into

∂2v

∂x2
  -  

∂v

∂y
  =  g(x,y).

III.Show that by rotation of the axis by 45° the equations

 
∂2u

∂x2
  -   

∂2u

∂y2
   = 0   and   

∂2u

∂x∂y
= 0.

can be transformed into one another.  Find the general solution for both
equations.


