Section 19: Compact Operators and Orthonormal Families

A question arises about how compact operators map orthonormal families. If \(T \) is compact and normal and \(\{ \phi_p \}_{p=1}^\infty \) is the sequence of orthonormal eigenvalues, then \(\lim_{n \to \infty} \{ T \phi_n \} = \lim_{n \to \infty} \{ \phi_n \} = 0 \). What if \(T \) is compact, but not necessarily normal (or self adjoint) and \(\{ \phi_p \}_{p=1}^\infty \) is an orthonormal family. Must \(\lim_{n \to \infty} \{ T \phi_n \} = 0 \)?

Theorem 39 Suppose that \(T \) is compact and \(\{ \phi_p \}_{p=1}^\infty \) is an orthonormal family. Then \(\lim_{n \to \infty} \{ T \phi_n \} = 0 \).

Proof: Suppose not. There is a subsequence \(\{ \phi_{u(p)} \}_{p=1}^\infty \) such that \(|T \phi_{u(p)}| \geq \varepsilon \) for some \(\varepsilon \geq 0 \). Since \(\{ \phi_{u(p)} \}_{p=1}^\infty \) is bounded and \(T \) is compact, there is a subsequence of \(\{ T \phi_{u(p)} \}_{p=1}^\infty \) that converges and has limit, say, \(v \neq 0 \). Then,

\[
\lim_{n \to \infty} \langle T \phi_{u(n)}, v \rangle = \langle v, v \rangle \neq 0.
\]

But, also,

\[
\lim_{n \to \infty} \langle T \phi_{u(n)}, v \rangle = \lim_{n \to \infty} \langle \phi_{u(n)}, T^* v \rangle = 0
\]

because these last are terms in the Fourier expansion of

\[
T^* v = \sum_p \langle T^* v, \phi_p \rangle \phi_p
\]

The terms of this sum must go to zero. This gets a contradiction.

Remark The ideas around Theorem 38 provides an easy characterization of when operators commute.

Theorem 40 Suppose that \(A \) and \(B \) are compact, normal operators. These are equivalent:
(a) \(AB = BA \), and
(b) There is a maximal orthonormal family \(\{ \phi_p \}_{p=1}^\infty \) which are eigenvectors for \(A \) and for \(B \).
Proof. If (b) holds, this is clear from the representation of Theorem 36. Suppose that (a) holds and λ is an eigenvalue of A. Let S be the subspace of vectors x such that $Ax = \lambda x$. Because A and B commute, B maps S into S. Hence there is a sequence of eigenvectors for B that spans S. But, each of these is an eigenvector for A corresponding to λ. This process is symmetric in A and B. The representation of Theorem 36 completes the result.

Remarks

(1) if λ is a nonzero eigenvalue for BA, then it is an eigenvalue for AB. To see this, suppose $BAx = \lambda x$. Then

$$(AB)Ax = A\lambda x = \lambda A x.$$

Thus, λ is a nonzero eigenvalue for AB.

2) Some use this last result to characterize normal operators this way: an operator is normal if and only if it and its adjoint can be "simultaneously diagonalized."

(3) This course has investigated the representation of linear transformations as $\sum_{p=1}^{\infty} \lambda_p \langle x, \phi_p \rangle \phi_p$. This representation gives insight as to the nature of linear transformations. We have found the representation is appropriate for compact, self-adjoint and normal operators. From examples, we have seen that it gives an understanding to bounded, even if not compact operators, and even to unbounded operators on a Hilbert space. The representation should give insight and unification to some of the ideas that are encountered in a study of integral equation, Green's functions, partial differential equations, and Fourier series.

Assignment

(1) Find the eigenvalues for

$$R(x) = \sum_{p=1}^{\infty} \langle x, \phi_p \rangle \phi_{p+1}$$ and for $L(x) = \sum_{p=1}^{\infty} \langle x, \phi_{p+1} \rangle \phi_p$.

(One of these has no eigenvalue and the other has every number in the unit disk as an eigenvalue.)

(2) Do the weighted left shift and right shift have a representation in the simple paradigm?

Maple Remark: The finite dimensional analogue to the right shift and the left shift might be explored as follows:

```maple
> with(linalg):
> R := array([[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]);
> L := array([[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]);
```
Looked at this way, we see that right-shift and left-shift are infinite dimensional analogues of nilpotent operators. We should check to confirm what are the eigenvalues and eigenvectors of these two.

\[\text{eigenvects}(R); \text{eigenvects}(L); \]

There is a new idea that should be brought up here. One could define "generalized eigenvectors" for A as vectors v for which there is a number \(\lambda \) such that

\[(A - \lambda I)v \neq 0 \]

but for which

\[(A - \lambda I)^2 v = 0. \]

This would be a generalized eigenvector v of rank 2. One could define a generalized eigenvector of rank k.

Here's an example:

\[A := \text{array}([[1,1,2],[0,1,3],[0,0,2]]) ; \]
\[\text{charpoly}(A, x) ; \]
\[\text{eigenvects}(A) ; \]

Note that 1 is an eigenvalue of multiplicity 2, but has only one eigenvector. We go looking for one generalized eigenvector of rank 2. To that end, we find the nullspace of \((A-I)^2\):

\[A_{\text{Idnty}} := \text{evalm}((A - \text{diag}(1,1,1)) \&^* (A - \text{diag}(1,1,1))) ; \]
\[\text{nullspace}(A_{\text{Idnty}}) ; \]

Thus, we have that

\[(A - 2 I)\{5,3,1\} = \{0,0,0\}, \]
\[(A - 1 I)\{1,0,0\} = \{0,0,0\}. \]

and

\[(A - 1 I)^2\{0,1,0\} = \{0,0,0\}. \]

Several questions come to mind:

(1) What are the generalized eigenvectors for R and L above?
(2) How do these fit into the context and structure for the paradigm presented in these notes?
Section 20: The Most General Paradigm:
A Characterization of Compact Operators

The paradigm that has been suggested in these notes is applicable for compact and normal operators. This is a fairly satisfactory state of affairs. Yet, the simple matrices

\[
\begin{pmatrix}
0 & 1 \\
0 & 2
\end{pmatrix}
\text{ and }
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{pmatrix}
\]
do not fit into that situation. We will push the representation one more time. In addition to the satisfaction of having a decompositon that is applicable to those two matrices, we will be able to obtain the Fredholm Alternative Theorems for mappings with less hypothesis.

Lemma 41. (1) If \(A \) is bounded and \(B \) is compact then \(AB \) is compact.
(2) If \(A \) is compact and \(B \) is bounded then \(AB \) is compact.
(3) If \(T \) is compact, then \(T^* \) is compact.
(Hint: since \(T \) is compact, then \(TT^* \) is compact and \(\langle TT^*x,x\rangle = |T^*x|^2 \).)

Theorem 42. Suppose that \(T \) is a compact operator from \(E \) to \(E \). There are maximal orthonormal families \(\{\varphi_p\} \) and \(\{\Theta_p\} \) and a non-increasing number sequence \(\{\lambda_p\}_{p=1}^\infty \) such that \(\lim_{p \to \infty} \lambda_p = 0 \), and if \(x \) is in \(E \), then

\[
T x = \sum_{p=1}^\infty \lambda_p \left< x, \varphi_p \right> \Theta_p.
\]
Moreover, the convergence is in the norm of BLT.

Proof: Suppose that \(T \) is compact. First, \(T^* \) is bounded since \(T \) is. To see this,

\[
|T^*x|^2 = \langle T^*x, T^*x \rangle = \langle TT^*x, x \rangle \leq |T||T^*x||x|,
\]
so that \(|T^*x| \leq |T||x| \). Now, knowing that \(T^* \) is bounded and \(T \) is compact, we can get that \(TT^* \) is compact and it is selfadjoint. Moreover, \(\langle T^*Tx, x \rangle \geq 0 \) so that all the eigenvalues of \(TT^* \) are nonnegative. Arrange all the eigenvalues in decreasing order. We have

\[
TT^*x = \sum_p \mu_p \left< x, x_p \right> x_p.
\]
For each \(n \) such that \(\mu_n \neq 0 \), let

\[
y_n = T(x_n)/\sqrt{\mu_n}.
\]
Then \(\langle y_n, y_m \rangle = \langle Tx_n, Tx_m \rangle \sqrt{\mu_n \mu_n} = \langle T^*Tx_n, x_m \rangle \sqrt{\mu_m \mu_n} = \sqrt{\frac{\mu_n}{\mu_m}} \langle x_n, x_m \rangle = 0.\)
Thus, \(\{y_p\} \) is orthogonal, even orthonormal. Extend it to be a maximal.

Then \(T(x_p) = \sqrt{\mu_p} y_p \) even if \(\mu_p = 0 \). Suppose that

\[
x = \sum_p <x, x_p> x_p
\]

\(Tx = T(\sum_p <x, x_p> x_p) = \sum_p <x, x_p> Tx_p = \sum_p \sqrt{\mu_p} <x, x_p> y_p \)

To see that this sum converges in the BLT norm,

\[
| \sum_{n+1} \sqrt{\mu_p} <x, x_p> y_p |^2 = \sum_p \mu_p | <x, x_p> | ^2 \mu_{p+1} | x | ^2
\]

Assignment

(20.1) Perhaps you will agree that applying this decomposition to the matrices

\[
\begin{pmatrix}
0 & 1 \\
0 & 2
\end{pmatrix}
\text{ and }
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 2
\end{pmatrix}
\]

is irresistible. Note that this is different from the decomposition which we had in the first of these notes.

(20.2) With \(T \) as in Theorem 42, What is \(T^* \)?

MAPLE Remark: We will get the generalized paradigm for a matrix \(T \) that is not normal.

\[
A := \text{evalm}(\text{transpose}(T) \cdot T);
\]

\[
\text{eigenvects}(A);
\]

\[
x[1] := \text{vector}([0, 1, 0]); x[2] := \text{vector}([0, 0, 1]); x[3] := \text{vector}([1, 0, 0]);
\]

\[
y[1] := \text{evalm}(T \cdot x[1]/1); y[2] := \text{evalm}(T \cdot x[2]/2); y[3] := \text{evalm}(T \cdot x[3]);
\]

\[
y[3] := (0, 1, 0);
\]

The proposal is that \(T(u) = 1 <u, x_1>y_1 + 2 <u, x_2>y_2 + 0 <u, x_3>y_3 \).

We check this.

\[
u := \text{vector}([a, b, c]);
\]

\[
\text{evalm}(T \cdot u);
\]

\[
\text{evalm}(1*\text{innerprod}(u, x[1])*y[1]
+ 2*\text{innerprod}(u, x[2])*y[2]
+ 0*\text{innerprod}(u, x[3])*y[3]);
\]