Module 8. General Convergence

We discuss three types of convergence in
C([O, 1]): normed, pointwise, and uniform.

Suppose we have a sequence of functions f;(x),
f>(x), f3(X), ... converging to a function g(x). We
say that the f's converge to g in the sense of

Norm Convergence if

& (F.02) - g(x)) dx® 0as nN® ¥ .



Pointwise Convergence If, for each X,
f.(X) ® g(xX) asn® ¥ .
Uniform Convergence if the maximum for all x in

[O, 1] of the difference In f,(x) and g(x) goes to
zeroas N ® ¥ : maX,jpqy | fh(X) - 9(x) [ ® O

These methods of convergence can be
contrasted.



These methods of convergence can be
contrasted.

1. Uniform Convergence implies pointwise
convergence. To see this, note only that if

MaXyi (0,1 | fn(X) - 9(x) | ® 0

then for each X,

f,(x) - g(x)| ® O.



These methods of convergence can be
contrasted.

2. Uniform Convergence implies normed
convergence. To see this, note that

1
d fn(X)'g(X) )de £ max,q [0,1] | fn(x) B g(x) |2
0
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3. Pointwise convergence does not imply uniform
convergence. Each Max = 1/e
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4. Pointwise convergence does not imply normed
convergence.
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5. Norm convergence does not imply pointwise
convergence.



Assignment: See the Maple Worksheet

In this Module 8, we have

1. Discussed three general types of convergence
in C([0,1]).

2. Contrasted these methods of convergence to
determine which are the stronger, which are

weaker.



