A Homomorphic E-Voting Protocol Based on El-Gamel Cryptosystem

Hamed Mousavi

Ph.D. Student, School of Mathematics Georgia Institute of Technology

Women In STEM 2019, Georgia State University, Atlanta, Georgia

April 5, 2019

A Homomorphic E-Voting Protocol Based on El-Gamel Cryptosystem

Outline

2 Algorithms of Protocols

Steps

Steps of a Typical E-Voting Protocol

- Set Up
- Vote Casting
- Tally Computing

Categories

Main categories of E-Voting Protocols

- Blind Signature: Using Token, Proof of Authentication for the Ballots.
- O Mixers: blind the name and vote of a voter by permutating the ballots.
- Homomorphic: Sum of Encrypted votes is equal to the Encryption of Sum of Votes (i.e. Encrypted Tally is equal to Tally of Encrypted).

Properties

Main Properties of E-Voting Systems

- Fairness: The result of voting should not be announced before the end of vote casting.
- Privacy: Ensures that no one links the ballot to the voter. (i.e. there is no difference for C, if A votes V₁ and B votes V₂ or A votes V₂ and B votes V₁).
- Eligibility: Only the eligible voters, who pass the authentication process, can be allowed to vote once.
- Robustness: If the protocol can recover from the faulty or betray of any (reasonably sized) subset of parties.
- Overcion-resistant: If an adversary cannot force a voter to behave as he/she wants.

Discrete Logarithm Problem

Let G be a group. Finding k where $y = g^k$ and $g, y \in G$ are known.

El-Gamel Cryptosystem

- Step one: Alice and Bob with private keys a, b ∈ 𝔽_p send their public keys aP, bP and compute a table of all {vP|v is plaintext}.
- Step two: Then Bob chooses random number k ∈ 𝔽_p and sends (x, y) = (kP, vP + kaP).
- Step three: Alice can compute yâax and checks vP in the table in order to find v.

A Homomorphic E-Voting Protocol Based on El-Gamel Cryptosystem

Algorithms of Protocols

Outline

2 Algorithms of Protocols

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3 Numerical Results

Algorithms of Protocols

Protocol

- Step Up: center chooses s, p, E_p and P where s ∈ F_p as its secret key and P as a primitive point on E_p. The center announced h = sP as its public key in the bulletin board. Voters are registered and are given a secret key in order to prove their authentication.
- Vote Casting: voter *i* chooses random number a_i ∈ 𝔽_p and v_j ∈ {1, â1}. Then he/she sends
 B_i = (B_{i,1}, B_{i,2}) = (a_iP, v_jP + a_isP) with some proofs of authentication.

• Tally Computing: The center computes and announces $s \sum_{j=1}^{N} B_{j,1}$ with a proof of authentication. So it can compute $(\sum_{j=1}^{N} a_j)sP$ and finally $(\sum_{j=1}^{N} v_j)P$ from $\sum_{j=1}^{N} B_{j,2} - s \sum_{j=1}^{N} B_{j,1}$. Next, $\sum_{i=1}^{N} v_i$ can be found according to the table $\{-NP, \dots, -P, 0, P, \dots, NP\}$ which is formed by the tallier. Algorithms of Protocols

Figure: The flowchart of the protocol proposed in [2].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Algorithms of Protocols

Figure: The flowchart of the proposed protocol.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A Homomorphic E-Voting Protocol Based on El-Gamel Cryptosystem

-Numerical Results

Outline

2 Algorithms of Protocols

- Numerical Results

	Foo	Kim	Radwin	porkodi	Lee , Boyd	Weber	Proposed	Cramer	Hirt	JCJ	Meng
Fairness	Y	Y	- 1	Y	Y	Y	Y	Y	Y	Y	Y
Eligibility	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y
Privacy	Y	Y	Р	Y	Y	Y	Y	Р	Y	Y	Y
Communication complexity	н	м	М	М	н	VH	м	М	н	М	VH
Random integer number	н	м	м	М	н	н	М	М	Н	н	VH
Individual verifiability	Y	Y	N	Y	N	N	Y	Y	Y	N	N
Global verifiability	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y
Receipt-freeness	N	Y	N	Ν	Y	Y	Ν	Ν	Y	Y	Y
Robustness	N	Ν	N	Y	Y	Y	Y	Y	Р	Y	Y
Coercion- resistant	N	N	N	N	Y	Y	N	Ν	N	N	Y
Efficiency	М	L	L	L	М	М	М	L	М	L	L

Y : Yes, N : No, L : Low, M : Medium , H : High, VH : Very High, P : Partially,

Table: The result of a voting for M = 2, N = 200, L = 5.

-Numerical Results

Figure: Time consuming of the proposed protocol with one server and multiple servers (parallel) and the protocol in [2]with $200 \le N \le 5000$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Numerical Results

Figure: Estimated number of voters in the same time consuming in the proposed protocol with one server, multiple servers (parallel) and protocol in [2].

- Numerical Results

	192 bits	224 bits	256 bits	384 bits	521 bits
The proposed protocol	18.23 K	24.77 K	32.31 K	72.46 K	133.18 K
The protocol in [6]	20.35 K	27.23 K	35.12 K	76.69 K	138.90

Table: Memory consumption with 10 subsystems, 200 voters, and different prime numbers.

- References

References

Cramer R, Gennaro R, Schoenmakers B. 1997. A secure and optimally efficient multi-authority election scheme. European transactions on Telecommunications. 8(5). pp. 481-490.

- Porkodi C. Arumuganathan R. Vidya K. 2011. *Multi-authority* Electronic Voting Scheme Based on Elliptic Curves. IJ Network Security. 12(2). pp. 84-91.

Mousavi H., Ahmadi B., and Rahimi S. A New Approach to Decrease The Computational Complexity of E-voting Protocols. Transactions on Emerging Telecommunications Technologies 28.7 (2017): e3140.

(日) (同) (三) (三) (三) (○) (○)

References

Thank You

$\rm HMOUSAVI6@GATECH.EDU$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ