Throughout, R denotes a commutative ring with $1 \neq 0$.

1. Let R be a Noetherian Jacobson ring, and M an R-module. Show that Nakayama’s Lemma holds without finiteness hypotheses on M: if $I \subseteq \text{Rad}(R)$, then $M = IM$ iff $M = 0$.

2. (a) Let R, S be domains and $\varphi : R \to S$ a surjection. If $\dim R = \dim S < \infty$, show that φ is an isomorphism.
 (b) Let k be a field, and $R = k[\alpha_1, \ldots, \alpha_n]$ a finitely generated k-algebra which is a domain. Show that $n \geq \dim R$, and that equality holds iff $\alpha_1, \ldots, \alpha_n$ are algebraically independent over k.

3. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d.
 (a) Show that $|\text{Spec } R| = \infty$ iff $d \geq 2$.
 (b) For any $n < d$, show that $\bigcap_{p \in \text{Spec } R} \text{ht } p = n \mathfrak{p} = \text{nil } R$.

4. Let (R, \mathfrak{m}) be a Noetherian local ring, and $f \in \mathfrak{m}$ a nonzerodivisor.
 (a) Show that $\bigcap_{i=1}^{\infty} (f^i) = 0$.
 (b) If $R/(f)$ has no embedded primes, show that R has no embedded primes. (Hint: if p is an embedded prime of R, show that there is a witness x for p with $x \notin (f)$, and deduce that the extension of p to $R/(f)$ consists of zerodivisors.)

Note: part (a) is a special case of Krull’s Intersection Theorem.

5. (a) In general, the height of a prime ideal can be much smaller than its minimal number of generators. In the ring $R = \mathbb{Q}[x_0..x_3]$, use the command $\text{monomialCurveIdeal}$ to find examples of prime ideals of codimension 2 with a large number of generators (using the commands isPrime, codim, and mingens). Can you find examples of such primes that require at least 5 generators? Exactly 11 generators?
 (b) Let

 $S = \mathbb{Q}[x_0..x_5]$
 $J = \text{minors}(2, \text{genericSymmetricMatrix}(S, 3))$

Find all subsets $X \subseteq \{x_0, \ldots, x_5\}$ of size 3 such that the image of X in S/J is \textit{not} algebraically independent over \mathbb{Q}. (The variety defined by J is called the Veronese surface in \mathbb{P}^5.)