COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

A metric space \((M, d)\) is a set \(M\) with a metric \(d(x, y) \geq 0, x, y \in M\) that has the properties

\[
d(x, y) = d(y, x), \quad x, y \in M
\]

\[
d(x, y) \leq d(x, z) + d(z, y), \quad x, y, z \in M \quad \text{(triangle inequality)}
\]

and

\[
d(x, y) = 0 \iff x = y
\]

Most of you have seen these definitions and so I will not go into any details.

A sequence of points \(x_n \in M\) is a Cauchy Sequence if for any \(\varepsilon > 0\) there exists \(N(\varepsilon)\) such that

\[
d(x_n, x_m) < \varepsilon
\]

for all \(n, m > N(\varepsilon)\). Accordingly we say that a complete metric space is complete if every Cauchy Sequence converges to some element \(x \in M\), i.e., for every \(\varepsilon > 0\) there exists \(N(\varepsilon)\) such that

\[
d(x_n, x) < \varepsilon
\]

for all \(n > N(\varepsilon)\).

A function \(f : M \to M\) is a contraction if there exists a constant \(0 \leq \alpha < 1\) such that for all \(x, y \in M\)

\[
d(f(x), f(y)) \leq \alpha d(x, y)
\]

A simple consequence of these definitions is the Banach fixed point theorem:

Theorem 0.1. Let \((M, d)\) be a complete metric space and \(f : M \to M\) a contraction. Then the equation

\[
x = f(x)
\]

has a unique solution \(\bar{x}\). Moreover, if \(x_0 \in M\) is any initial point and \(x_{n+1} = f(x_n), n = 0, 1, \ldots\), then

\[
d(\bar{x}, x_n) \leq \frac{\alpha^n}{1 - \alpha} d(f(x_0), x_0)
\]

Proof. If \(\bar{x}\) and \(\bar{y}\) are two solutions then

\[
d(\bar{x}, \bar{y}) = d(f(\bar{x}), f(\bar{y})) \leq \alpha d(\bar{x}, \bar{y})
\]

and hence \(d(\bar{x}, \bar{y}) = 0\) and therefore \(\bar{x} = \bar{y}\). Pick any \(n > m\) and use the triangle inequality to find

\[
d(x_n, x_m) \leq \sum_{k=m}^{n-1} d(x_{k+1}, x_k)
\]

Moreover,

\[
d(x_{k+1}, x_k) = d(f(x_k), f(x_{k-1})) \leq \alpha d(x_k, x_{k-1}) \leq \alpha^k d(f(x_0), x_0)
\]

and so

\[
\sum_{k=m}^{n-1} d(x_{k+1}, x_k) \leq \sum_{k=m}^{n-1} \alpha^k d(f(x_0), x_0) = \alpha^m \frac{1 - \alpha^{n-m}}{1 - \alpha} d(f(x_0), x_0) \leq \frac{\alpha^m}{1 - \alpha} d(f(x_0), x_0).
\]
Hence
\[d(x_n, x_m) \leq \frac{\alpha^m}{1 - \alpha}d(f(x_0), x_0) \]
which proves that the sequence \(x_n \) is a Cauchy sequence. The completeness of \((M, d)\) guarantees that \(x_n \) has a limit \(\bar{x} \). We have to show that \(\bar{x} \) solves the equation. Pick \(n \geq 1 \) arbitrary and use that
\[d(f(\bar{x}), \bar{x}) \leq d(f(\bar{x}), x_n) + d(x_n, \bar{x}) = d(f(\bar{x}), f(x_{n-1})) + d(x_n, \bar{x}) \]
which is bounded above by
\[\alpha d(\bar{x}, x_{n-1}) + d(x_n, \bar{x}) \leq \frac{2\alpha^n}{1 - \alpha}d(f(x_0), x_0) . \]
Because \(n \) is arbitrary \(d(f(\bar{x}), \bar{x}) \) is smaller than any positive number and hence equal to 0. \(\square \)

Example 1: For a simple example of a metric space that is not necessarily complete consider any set \(S \subset \mathbb{R}^d \) and consider the Euclidean distance
\[d(x, y) = |x - y| = \sqrt{\sum_{j=1}^{d} (x_j - y_j)^2} . \]
It is obvious that \(d(x, y) = d(y, x) \geq 0 \) for all \(x, y \in S \). Further
\[0 = d(x, y) = |x - y| \]
implies that \(x \) and \(y \) have the same components and hence are equal. The triangle inequality follows from the following facts:

Schwarz’ inequality
\[x \cdot y := \sum_{j=1}^{d} x_j y_j \leq \sqrt{\sum_{j=1}^{d} x_j^2} \sqrt{\sum_{j=1}^{d} y_j^2} = |x||y| \]

Minkowski’s inequality
\[|x + y| \leq |x| + |y| \]
This follows easily from Schwarz’ inequality. Thus, we find that for any \(x, y, z \in S \)
\[d(x, y) = |x - y| = |x - z + z - y| \leq |x - z| + |z - y| = d(x, z) + d(z, y) . \]
In this context, the following is an interesting application of the contraction mapping theorem. We start first with an easy case. A map is called **Lipschitz**, if there exists a constant \(L \) such that for all \(x, x_2 \)
\[|f(x_1) - f(x_2)| \leq L|x_1 - x_2| . \]
Thus, a contraction is a Lipschitz map with Lipschitz constant \(L < 1 \).

Given a map
\[f : \mathbb{R}^d \rightarrow \mathbb{R}^d \]
and consider the map
\[h : \mathbb{R}^d \rightarrow \mathbb{R}^d \]
given by \(h(x) = x + f(x) \). Assume that \(f \) is a contraction, i.e.,
\[
|f(x) - f(y)| \leq \alpha |x - y|
\]
for some constant \(\alpha < 1 \). We claim that \(h \) has an inverse which is also a contraction.

To see this we have to show two things.

a) \(h \) is injective.
This follows from the fact that
\[
x_1 + f(x_1) = x_2 + f(x_2)
\]
entails that
\[
|x_1 - x_2| = |f(x_2) - f(x_1)| \leq \alpha |x_1 - x_2|
\]
which yields \(x_1 = x_2 \).

b) Next we have to show that \(h \) is onto. For any given \(y \in \mathbb{R}^d \) we consider the equation
\[
y = x + f(x)
\]
which we rewrite as
\[
x = y - f(x) := \phi(x)
\]
The map \(\phi \) is a contraction
\[
|\phi(x_1) - \phi(x_2)| = |f(x_1) - f(x_2)| \leq \alpha |x_1 - x_2|
\]
and hence there exists a unique fixed point \(a \in \mathbb{R}^d \), i.e.,
\[
a = \phi(a) = y - f(a).
\]
Hence \(h \) has an inverse, which we denote by \(g : h(S) \to \mathbb{R}^d \). To show that \(g \) is Lipschitz we write \(y_i = h(x_i), i = 1, 2 \) and note that
\[
|x_1 - x_2| \leq |y_1 - y_2| + |f(x_1) - f(x_2)| \leq |y_1 - y_2| + \alpha |x_1 - x_2|
\]
so that
\[
|x_1 - x_2| \leq \frac{1}{1 - \alpha} |y_1 - y_2|
\]
which shows that \(g \) is Lipschitz with Lipschitz constant \(\frac{1}{1 - \alpha} \). This argument can be adapted to a more general situation.

Theorem 0.2. Imagine an open set \(S \subset \mathbb{R}^d \) and let
\[
f : S \to \mathbb{R}^d
\]
be a contraction with contraction constant \(\alpha < 1 \). Then for the map
\[
h : S \to h(S) , h(x) = x + f(x)
\]
h(\(S \)) is open and the map \(h \) has an inverse \(g : h(S) \to S \) which is Lipschitz with Lipschitz constant \(\frac{1}{1 - \alpha} \).

Proof. The fact that \(h \) is injective has the same proof as before. A priori we do not know much about the set \(h(S) \). We prove that this set is open in \(\mathbb{R}^d \). Pick any \(y_0 \in h(S) \). Then, by definition, there exists a point \(x_0 \in S \) so that \(h(x_0) = y_0 \). To arrange things in a convenient way we set
\[
U(x) = h(x_0 + x) - y_0 = x + f(x_0 + x) + x_0 - y_0 = x + V(x)
\]
so that \(U(0) = 0 \) i.e., \(U \) fixes the origin. Hence
\[
U : S - x_0 \to h(S) - y_0 ,
\]
and our goal is to show that $U(S - x_0)$ is an open set. Pick $r > 0$ so that the closed ball $B_r(0) \subset S - x_0$ and note that

$$|V(x)| = |V(x) - V(0)| = |f(x + x_0) - f(x_0)| \leq \alpha |x|$$

so that V maps the ball $B_r(0)$ into the ball $B_{\alpha r}(0) \subset B_r(0)$. Such a radius r exists, because $S - x_0$ is open. Indeed pick r' so that the open ball $B_r(0) \subset S - x_0$ and pick any $0 < r < r'$ which assures that $B_r(0) \subset S - x_0$. Hence, V is a map of the metric space $B_r(0)$ into itself. Moreover, V is a contraction on $B_r(0)$. Indeed for $x_1, x_2 \in B_r(0)$ we have that

$$|V(x_1) - V(x_2)| = |f(x_1 + x_0) - f(x_2 + x_0)| \leq \alpha |x_1 - x_2| .$$

If we can show that any point $y \in B_r(0)$ is of the form $U(z)$ for some $z \in B_r(0)$ we are done. Thus, we have to find $z \in B_r(0)$ so that

$$y = z + V(z)$$

i.e., the map $y - V(x)$ has a fixed point in $B_r(0)$. Note that $B_r(0)$ is closed and hence is a complete metric space. Thus, by the fixed point theorem there exists $z \in B_r(0)$ with the desired properties. Denoting the inverse by $g : h(S) \to S$ we have for $y_1, y_2 \in h(S)$, setting $x_i = g(y_i), i = 1, 2,

$$|x_1 - x_2| = |(y_1 - f(x_1)) - (y_2 - f(x_2))| \leq |y_1 - y_2| + |f(x_1) - f(x_2)| \leq |y_1 - y_2| + \alpha |x_1 - x_2|$$

so that

$$|x_1 - x_2| \leq \frac{1}{1 - \alpha} |y_1 - y_2| ,$$

which shows that g is a Lipschitz map with Lipschitz constant $\frac{1}{1 - \alpha}$.

A consequence of this Theorem is the inverse function theorem.

Theorem 0.3. Let $S \subset \mathbb{R}^d$ be an open set and $F : S \to \mathbb{R}^d$ a map that is continuously differentiable. Assume that the Jacobi matrix $DF(x_0), x_0 \in S$, is invertible. Then there exists an open set $U \subset \mathbb{R}^d$ with $x_0 \in U$ such that $F(U)$ is open and there exists a map $g : F(U) \to U$ such that $g \circ F = id$. Moreover, g is differentiable at $F(x_0)$ and we have that

$$Dg(F(x_0)) = DF(x_0)^{-1} .$$

Proof. We have to construct U. First we normalize things conveniently. By replacing $F(x)$ by $DF(x_0)^{-1}F(x)$ we may assume that $DF(x_0) = I$. Further, replacing $F(x)$ by $F(x + x_0) - F(x_0)$ we may assume that $x_0 = 0$ and $F(x_0) = 0$. Let’s denote this renormalized map by h. Since h is continuously differentiable we have that

$$h(x) - h(0) = \int_0^1 \frac{d}{dt} h(tx)dt = \int_0^1 Dh(tx)dt \cdot x$$

which leads to

$$h(x) = x + f(x)$$

where

$$f(x) := \int_0^1 (Dh(tx) - I)dt \cdot x .$$

It is convenient to set

$$M_{ij}(x) = (Dh(x) - I)_{ij} .$$
Since $Dh(x)$ is continuous at 0 we can find $r > 0$ so that
\[\max_i \sup_{|x| \leq 3r} |M_{i,j}(x)| \leq \frac{1}{2d}. \]

Hence we have that
\[|f(x)| = \sqrt{\sum_i \left(\sum_j \int_0^t M_{i,j}(tx) dt \right)^2} \leq \frac{1}{2d} \sqrt{\sum_i \left(\sum_j |x_j| \right)^2} = \frac{1}{2d} \sqrt{d^2 \sum_j |x_j|^2} = \frac{1}{2} |x| \]
and we see that $f(B_{2r}(0)) \subset B_r(0)$ and in particular $f(\overline{B}_r(0)) \subset \overline{B}_r(0)$. Further for $x_1, x_2 \in B_r(0)$ we have that
\[f(x_1) - f(x_2) = h(x_1) - h(x_2) - x_1 + x_2 = \int_0^1 [Dh((1-t)x_2 + tx_1) - I] dt (x_1 - x_2) \]
and
\[|(1-t)x_2 + tx_1| \leq |x_2| + t|x_1 - x_2| \leq 3r \]
and hence
\[|f(x_1) - f(x_2)| \leq \frac{1}{2} |x_1 - x_2|. \]
Thus, $f : \overline{B}_r(0) \rightarrow \overline{B}_r(0)$ is a contraction and therefore $V = f(B_r(0))$ is open and $h : V \rightarrow \overline{B}_r(0)$ has a Lipschitz continuous inverse, which we denote again by g. To see that g is differentiable at 0 we shall show that
\[|g(x) - x| = o(|x|). \]
This implies that g is differentiable at 0 and $Dg(0) = I$ as it should be. Pick any sequence $x_n \rightarrow 0$, set $y_n = g(x_n)$. Note that $y_n \rightarrow 0$ as well and we compute
\[\frac{|g(x_n) - x_n|}{|x_n|} = \frac{|y_n - h(y_n)|}{|y_n|} \frac{|g(x_n)|}{|x_n|}. \]
Because $g(0) = 0$, we have that
\[\frac{|g(x_n)|}{|x_n|} \leq 2 \]
and hence
\[\lim_{n \rightarrow \infty} \frac{|g(x_n) - x_n|}{|x_n|} = 0. \]