SYSTEMS OF DIFFERENTIAL EQUATIONS, EULER'S FORMULA

1. UniQueness for solutions of differential equations.

We consider the system of differential equations given by

$$
\begin{equation*}
\frac{d}{d t} \vec{x}=\vec{v}(\vec{x}), \tag{1}
\end{equation*}
$$

with a given initial condition $\vec{x}(0)=\vec{x}_{0}$. Here $\vec{x} \in \mathbb{R}^{n}$ and \vec{v} is a function that maps \mathbb{R}^{n} into \mathbb{R}^{n}. We shall assume that for any two vectors \vec{x}_{1}, \vec{x}_{2} we

$$
\left\|\vec{v}\left(\vec{x}_{1}\right)-\overrightarrow{\left(\vec{x}_{2}\right)}\right\| \leq L\left\|\vec{x}_{1}-\vec{x}_{2}\right\|
$$

where L is some constant, usually called the Lipschitz constant. An example is

$$
\overrightarrow{(\vec{x})}=A \vec{x}
$$

where A is a constant real $n \times n$ matrix. IWe compute

$$
\left\|A \vec{x}_{1}-A \vec{x}_{2}\right\|^{2}=\left\|A\left(\vec{x}_{1}-\vec{x}_{2}\right)\right\|^{2}=\left(\vec{x}_{1}-\vec{x}_{2}\right) \cdot A^{T} A\left(\vec{x}_{1}-\vec{x}_{2}\right) \leq \lambda\left\|\left(\vec{x}_{1}-\vec{x}_{2}\right)\right\|^{2}
$$

where λ is the largest eigenvalue of $A^{T} A$.
The following is relatively easy to prove.
Theorem 1.1. The differential equation (1) has at most one solution that satisfies the given initial condition.

Proof. Suppose there are two solutions $\vec{x}_{1}(t)$ and $\vec{x}_{2}(t)$ both satisfying $\vec{x}_{1}(0)=\vec{x}_{2}(0)=\vec{x}_{0}$. Integrating we see that both solutions satisfy the equation

$$
\vec{x}_{i}(t)=\vec{x}_{0}+\int_{0}^{t} \vec{v}\left(\vec{x}_{i}(\tau)\right) d \tau, i=1,2 .
$$

Hence, noting that the initial condition drops out, we get

$$
\left\|\vec{x}_{1}(t)-\vec{x}_{2}(t)\right\|=\left\|\int_{0}^{t} \vec{v}\left(\vec{x}_{1}(\tau)\right) d \tau-\int_{0}^{t} \vec{v}\left(\vec{x}_{2}(\tau)\right) d \tau\right\|=\left\|\int_{0}^{t}\left[\vec{v}\left(\vec{x}_{1}(\tau)\right)-\vec{v}\left(\vec{x}_{2}(\tau)\right)\right] d \tau\right\|
$$

Using the Minkowski inequality which is essentially the triangle inequality we get

$$
\left\|\vec{x}_{1}(t)-\vec{x}_{2}(t)\right\| \leq \int_{0}^{t}\left\|\vec{v}\left(\vec{x}_{1}(\tau)\right)-\vec{v}\left(\vec{x}_{2}(\tau)\right)\right\| d \tau
$$

and using the Lipschitz condition

$$
\left.\left\|\vec{x}_{1}(t)-\vec{x}_{2}(t)\right\| \leq L \int_{0}^{t} \| \vec{x}_{1}(\tau)\right)-\vec{x}_{2}(\tau) \| d \tau
$$

and this holds for all t as long as the solutions exist. If $t<T$ we have that

$$
\left.\left.\left\|\vec{x}_{1}(t)-\vec{x}_{2}(t)\right\| \leq L \int_{0}^{t} \| \vec{x}_{1}(\tau)\right)-\vec{x}_{2}(\tau)\left\|d \tau \leq L \int_{0}^{T}\right\| \vec{x}_{1}(\tau)\right)-\vec{x}_{2}(\tau) \| d \tau
$$

This inequality implies that for all $t \leq T$ that

$$
\left\|\vec{x}_{1}(t)-\vec{x}_{2}(t)\right\| \leq \operatorname{LTM}(T)
$$

where we set $M(T)=\max _{[0, T]}\left\|\vec{x}_{1}(t)-\vec{x}_{2}(t)\right\|$. Hence we also have that

$$
M(T) \leq L T M(T)
$$

and if we choose T such that $L T<1$ it follows that $M(T)=0$. Hence the two solution coincide on the time interval $[0, T]$. Choosing $\vec{x}(T)$ as the new initial condition the solution must coincide on the interval $[T, 2 T]$ also and so on. We can argue the same way that for negative times the solutions have to coincide.

2. Some remarks about the $e^{A t}$

Recall that we defined the exponential of a matrix $e^{A t}$ by

$$
e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!} .
$$

Here are some facts
Theorem 2.1. We have

$$
e^{A t} e^{A s}=e^{A(t+s)}
$$

for all $s, t \in \mathbb{R}$.
Proof. Pick any initial condition \vec{x}_{0}. The function

$$
\vec{x}(t)=e^{A(t+s)} \vec{x}_{0}
$$

is a solution of the equation $\vec{x}=A \vec{x}$. This follows from

$$
\frac{d}{d t} e^{A(t+s)}=A e^{A(t+s)}
$$

Further the function $\vec{y}(t)=e^{A t} e^{A s} \vec{x}_{0}$ is also a solution of the equation $\vec{x}=A \vec{x}$. moreover, for $t=0$ we have that $\vec{x}(0)=e^{A s} \vec{x}_{0}=\vec{y}(0)$. By uniqueness $\vec{x}((t)=\vec{y}(t)$ and thus

$$
e^{A t} e^{A s} \vec{x}_{0}=e^{A(t+s)} \vec{x}_{0}
$$

for all \vec{x}_{0}. Since \vec{x}_{0} is arbitrary this proves the theorem.
An interesting consequence of this theorem is that $e^{A t}$ is invertible for all t.

$$
e^{A t} e^{A(-t)}=e^{A(t-t)}=I
$$

3. One parameter families of matrices

We say that a family of $n \times n$ matrices $P(t)$ is a one parameter family if

$$
P(0)=I
$$

and for all $t, s \in \mathbb{R}$,

$$
P(t) P(s)=P(t+s)
$$

We shall only consider one parameter families that are differentiable.
A particularly useful idea is to consider one parameter families of rotations $R(\phi)$. These are matrices that satisfy $R(\phi)^{T} R(\phi)=I$. First we compute the derivative

$$
\frac{d}{d \phi} R(\phi)=\lim _{\varepsilon \rightarrow 0} \frac{R(\phi+\varepsilon)-R(\phi)}{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \frac{R(\varepsilon)-I}{\varepsilon} R(\phi)=\Omega R(\phi)
$$

where we denote

$$
\Omega=\lim _{\varepsilon \rightarrow 0} \frac{R(\varepsilon)-I}{\varepsilon}=\frac{d}{d \phi} R(0) .
$$

The matrix Ω is not arbitrary. Indeed, differentiating

$$
\frac{d}{d \phi} I R^{T}(\phi) R(\phi)=\frac{d}{d \phi} I=0
$$

and bu the product rule

$$
\left.\frac{d}{d \phi}\right|_{\phi=0} I R^{T}(\phi) R(\phi)=\Omega^{T}+\Omega
$$

and we learn that Ω must be a skew symmetric matrix,

$$
\Omega^{T}=-\Omega
$$

So far this worked in arbitrary dimensions. We specialize to three dimension and write the general skew symmetric matrix as

$$
\Omega=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

note the interesting fact that

$$
\Omega \vec{x}=\vec{\omega} \times \vec{x} .
$$

We also note that $\Omega \vec{\omega}=0$. Recall that we have the equation

$$
R^{\prime}(\phi)=\Omega R(\phi)
$$

and this allows us to compute $R(\phi)$ explicitly. We shall assume that the vector $\vec{\omega}$ is normalized. We have to compute

$$
e^{\Omega \phi}=\sum_{n=0}^{\infty} \frac{\Omega^{n} \phi^{n}}{n!}
$$

Here are some computations:

$$
\Omega^{2}=\left[\begin{array}{ccc}
-\omega_{2}^{2}-\omega_{3}^{2} & \omega_{1} \omega_{2} & \omega_{1} \omega_{3} \\
\omega_{2} \omega_{1} & -\omega_{3}^{2}-\omega_{1}^{2} & \omega_{2} \omega_{3} \\
\omega_{3} \omega_{1} & \omega_{3} \omega_{2} & -\omega_{1}^{2}-\omega_{3}^{2}
\end{array}\right]
$$

which can be written as

$$
\Omega^{2}=-I+\vec{\omega} \vec{\omega}^{T}
$$

Here we use that $\vec{\omega}$ is a unit vector. Thus we can start a little table:

$$
\Omega, \Omega^{2}=-I+\vec{\omega} \vec{\omega}^{T}, \Omega^{3}=-\Omega, \Omega^{4}=-\Omega^{2} \ldots
$$

Thus it makes sense to split

$$
e^{\Omega \phi}=\sum_{m=0}^{\infty} \frac{\Omega^{2 m} \phi^{2 m}}{(2 m)!}+\sum_{m=0}^{\infty} \frac{\Omega^{2 m+1} \phi^{2 m+1}}{(2 m+1)!}
$$

into even and odd powers. We have that

$$
\Omega^{2 m+1}=(-1)^{m} \Omega
$$

and hence the second sum reduces to

$$
\sum_{m=0}^{\infty} \frac{\Omega^{2 m+1} \phi^{2 m+1}}{(2 m+1)!}=\Omega \sum_{m=0}^{\infty} \frac{(-1)^{m} \phi^{2 m+1}}{(2 m+1)!}=\Omega \sin \phi
$$

For the even sum have to be careful noting that for $m=1,2, \ldots$

$$
\Omega^{2 m}=(-1)^{m}\left(I-\vec{\omega} \vec{\omega}^{T}\right) .
$$

For $m=0$ we have the identity which we write

$$
I=I-\vec{\omega} \vec{\omega}^{T}+\vec{\omega} \vec{\omega}^{T}
$$

and get that

$$
\sum_{m=0}^{\infty} \frac{\Omega^{2 m} \phi^{2 m}}{(2 m)!}=\vec{\omega} \vec{\omega}^{T}+\left(I-\vec{\omega} \vec{\omega}^{T}\right) \sum_{m=0}^{\infty} \frac{(-1)^{m} \phi^{m}}{(2 m)!}
$$

which equals

$$
\vec{\omega} \vec{\omega}^{T}+\left(I-\vec{\omega} \vec{\omega}^{T}\right) \cos \phi .
$$

To summarize, we have shown that

$$
e^{\Omega \phi}=\cos \phi I+\vec{\omega} \vec{\omega}^{T}(1-\cos \phi)+\Omega \sin \phi
$$

Let's note a few things: The vector $\vec{\omega}$ is an eigenvector for this matrix with eigenvalue 1 . This is the axis of rotation. Take

$$
\vec{\omega}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

i.e, the z axis. Then we get the matrix

$$
\left[\begin{array}{ccc}
\cos \phi & 0 & 0 \\
0 & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sin \phi=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which is precisely a rotation in the positive direction by an angle ϕ. To summarize:
Theorem 3.1. The rotation about the $\vec{\omega}$ axis by an angle ϕ is given by

$$
R(\phi)=\cos \phi I+(1-\cos \phi) \vec{\omega} \vec{\omega}^{T}+\Omega \sin \phi,
$$

in particular

$$
R(\phi) \vec{x}=\cos \phi \vec{x}+(1-\cos \phi)(\vec{\omega} \cdot \vec{x}) \vec{\omega}+\sin \phi(\vec{\omega} \times \vec{x}) .
$$

This is Euler's formula. Because

$$
\Omega^{2}+I=\vec{\omega} \vec{\omega}^{T}
$$

Euler's formula canals be written in the form

$$
R(\phi)=\cos \phi I+(1-\cos \phi)\left(\Omega^{2}+I\right)+\Omega \sin \phi=I+(1-\cos \phi) \Omega^{2}+\sin \phi \Omega
$$

Note that the angle is any value between 0 and 2π. If $\phi<0$ we may replace ϕ by $-\phi$ which keeps the sign of the cosine function fixed but changes the sign of the sign function. Thus if, additionally we reverse the direction of $\vec{\omega}$ we get back the same rotation. Needless to say that the rotation by an angle $\phi=0$ or $\phi=2 \pi$ is the identity. Also note that in terms of $R(\phi)$ we have that

$$
\frac{1}{2}\left[R(\phi)+R(\phi)^{T}\right]=\cos \phi I+(1-\cos \phi) \vec{\omega} \vec{\omega}^{T}
$$

and

$$
\frac{1}{2}\left[R(\phi)-R(\phi)^{T}\right]=\Omega \sin \phi
$$

4. A purely algebraic derivation of Euler's formula

Our previous result concerns solution of the differential equation $R^{\prime}(\phi)=\Omega R(\phi)$. Suppose now that you are given an arbitrary rotation M. Can we find ϕ and Ω so that

$$
M=I+(1-\cos \phi) \Omega^{2}+\sin \phi \Omega ?
$$

To be more specific we have the following theorem.
Theorem 4.1. Let M be a 3×3 rotation. Define

$$
\cos \phi=\frac{\operatorname{Tr} M-1}{2} .
$$

and

$$
\Omega=\frac{1}{2 \sin \phi}\left[M-M^{T}\right]
$$

provided that $\phi \neq 0, \pi, 2 \pi$. Then

$$
M=M=I+(1-\cos \phi) \Omega^{2}+\sin \phi \Omega .
$$

For $\phi=0,2 \pi$ we have that $M=I$ and for $\phi=\pi$

$$
M=I+2 \Omega^{2},
$$

and hence, Euler's formula holds in these cases as well.
Recall that a 3×3 matrix M is a rotation if it satisfies $M^{T} M=I$ and $\operatorname{det} M=+1$. We would like to show that there exist a unit vector $\vec{\omega}$ and an angle $\phi, 0 \leq \phi \leq 2 \pi$ such that

$$
M=\cos \phi I+(1-\cos \phi) \vec{\omega} \vec{\omega}^{T}+\Omega \sin \phi
$$

As usual

$$
\Omega=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

We first start with a simple Lemma:
Lemma 4.2. Let M be a rotation in three space, i.e., $M^{T} M=I$ and $\operatorname{det} M=+1$. Then the matrix M must have the eigenvalue 1. Moreover, the other two eigenvalues must be of the form $e^{ \pm i \phi}$ for some $0 \leq \phi \leq 2 \pi$.

Proof. To see this consider

$$
\begin{gathered}
\operatorname{det}(M-I)=\operatorname{det} M^{T} \operatorname{det}(M-I)=\operatorname{det} M^{T}(M-I) \\
=\operatorname{det}\left(I-M^{T}\right)=\operatorname{det}(I-M)^{T}=\operatorname{det}(I-M)=-\operatorname{det}(M-I)
\end{gathered}
$$

Hence $\operatorname{det}(M-I)=0$ and 1 is an eigenvalue. If we denote the other two eigenvalues by λ_{1} and λ_{2} we must have that $\lambda_{1}+\lambda_{2}+1=\operatorname{Tr} M$ and $\lambda_{1} \lambda_{2}=1$ (Why?) Hence

$$
\lambda_{1}+\lambda_{2}=\operatorname{Tr} M-1, \lambda_{1} \lambda_{2}=1
$$

The best way to solve these equations is to note that $-3 \leq \operatorname{Tr} M \leq 3$ (Why?) Hence we may define

$$
\cos \phi=\frac{\operatorname{Tr} M-1}{2}
$$

and we have to solve the equations $\lambda_{1}+\lambda_{2}=2 \cos \phi, \lambda_{1} \lambda_{2}=1$. We easily find that $\lambda_{1}=e^{i \phi}$ and $\lambda_{2}=e^{-i \phi}$. Thus we have the eigenvalues $e^{i \phi}, e^{-i \phi}, 1$.

Let us assume that $\phi \neq 0, \pi, 2 \pi$. These cases we deal with later. Recall that

$$
\cos \phi=\frac{\operatorname{Tr} M-1}{2}
$$

and define

$$
\Omega=\frac{1}{2 \sin \phi}\left[M-M^{T}\right]
$$

Note that this suggests itself from Euler's formula (Why?). We have to check that

$$
M=I+(1-\cos \phi) \Omega^{2}+\sin \phi \Omega=: R
$$

Cayley's theorem tells us that

$$
(M-I)\left(M-e^{i \phi} I\right)\left(M-e^{-i \phi} I\right)=0
$$

and developing the products yields

$$
M^{3}-(1+2 \cos \phi) M^{2}+(1+2 \cos \phi) M-I=0 .
$$

Now

$$
\begin{gathered}
I+(1-\cos \phi) \Omega^{2}+\sin \phi \Omega=I+\frac{1-\cos \phi}{4 \sin ^{2} \phi}\left[M-M^{T}\right]^{2}+\sin \phi \frac{1}{2 \sin \phi}\left[M-M^{T}\right] \\
=I+\frac{1}{4(1+\cos \phi)}\left[M-M^{T}\right]^{2}+\frac{1}{2}\left[M-M^{T}\right]
\end{gathered}
$$

We further have that

$$
\left[M-M^{T}\right]^{2}=M^{2}+M^{2 T}-2 I
$$

and by Cayley's theorem

$$
M^{2}=(1+2 \cos \phi) M-(1+2 \cos \phi) I+M^{T}, M^{2 T}=(1+2 \cos \phi) M^{T}-(1+2 \cos \phi) I+M
$$

so that

$$
M^{2}+M^{2 T}-2 I=2(1+\cos \phi)\left[M+M^{T}\right]-4(1+\cos \phi) I
$$

Thus,

$$
R=\frac{1}{2}\left[M+M^{T}\right]+\frac{1}{2}\left[M-M^{T}\right]=M .
$$

The remaining cases are easily dealt with. Assume that $\phi=0$ or 2π. Then

$$
\operatorname{Tr} M=3 .
$$

Now the matrix M is of the form

$$
\left[\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right]
$$

all of them being unit vectors. The trace, therefore is $u_{11}+u_{22}+u_{33}=3$ since each of these numbers is between -1 and 1 they all must be equals to 1 . This means that the rotation matrix must be the identity matrix. The case $\phi=\pi$ implies that -1 must be a two fold eigenvalue. From this we get three facts: $M^{2}=I$ and hence $M=M^{T}$ and $M+I$ has a two dimensional null space. Set

$$
P=\frac{M+I}{2}
$$

and note that

$$
P^{2}=P, P^{T}=P
$$

Hence P projects the three dimensional space onto a one dimensional space and therefore it must be of the form

$$
P=\vec{\omega} \vec{\omega}^{T}
$$

for some unit vector $\vec{\omega}$. Thus,

$$
M=-I+2 \vec{\omega} \vec{\omega}^{T}=I+2 \Omega^{2}
$$

which is what we wanted to show.

