
MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

1. Complex matrices

Recall that the complex numbers are given by a + ib where a and b are real and i is the
imaginary unity, i.e.,

i2 = −1 .

In what we describe below, A is an n × n matrix, not necessarily real. The set of complex
numbers is denoted by C. The addition and multiplication of two complex numbers are given
by

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

and the usual rules apply. In particular complex multiplication is commutative, i.e., z1z2 =
z2z1.

Notable is the inverse, i.e., the complex number z that solves the equation (a + ib)z = 1.
The solution is given by

z =
(a− ib)
a2 + b2

.

If a complex number z = a+ ib, then the complex conjugate z = a− ib. It has the property
that

zz = |z|2 = a2 + b2 .

If an n×m matrix A has complex entries, we call it a complex matrix. Thus if A is a given

complex matrix and ~b is a given complex vector we may try to solve the equation

A~x = ~b .

Clearly ~x will be a complex vector. The row reduction algorithm works also in this situation
and we can talk about the null space of a matrix the column space. These are now complex
vector spaces. One has to think a little about the other two subspaces and this has to do with
what we mean by a dot product for complex vectors. Now one is tempted to define the dot
product between two complex vectors ~z and ~w in Cn by z1w1 + z2w2 + · · · znwn. Here is the
problem: consider the vector in C2

~z =

[
1
i

]
then

~z · ~z = 12 + i2 = 1− 1 = 0 .

Recall that for real vectors we interpreted the dot of a vector with itself as the square of
the length. In the complex domain this does not seem to work. If we use the complex
conjugate, however, the story looks more promising. We define the inner product of two
vectors ~w, ~z ∈ Cn by

〈~w, ~z〉 = w1z1 + · · ·wnzn .

Note that we have that
〈~z, ~z〉 = |z1|2 + · · ·+ |zn|2
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which is strictly positive unless ~z is the zero vector. Hence we may define

‖~z‖ =
√
〈~z, ~z〉 .

The name ‘inner product’ is used to distinguish it from the dot product. Note that for real
vectors the inner product reduces to the dot product. There is one thing one has to be careful
about. We have

〈~z, ~w〉 = 〈~w, ~z〉 ,
which is different from the corresponding relation for the dot product. There are a number of
simple consequences. One is that Schwarz’s inequality still holds,

|〈~z, ~w〉| ≤ ‖~z‖‖~w‖ .
Further the triangle inequality is also true

‖~z + ~w‖ ≤ ‖~z‖+ ‖~w‖ .
These things are easy to proof. Do these as an exercise.

Now we define two vectors ~z and ~w to be orthogonal if

〈~z, ~w〉 = 0 .

Note that in this definition it is irrelevant whether we consider 〈~z, ~w〉 = 0 or 〈~w, ~z〉 = 0, it
amounts to the same.

We define the adjoint of a matrix A the matrix AT and denote it by A∗. Thus the
adjoint is found by taking the the complex conjugate of all the matrix elements and then
take the transpose or, what amounts to the same, the transpose and then taking the complex
conjugate of all its matrix elements. As before one easily finds that (AB)∗ = B∗A∗ and that
(A∗)−1 = (A−1)∗. It is useful to observe that for any complex vectors ~z and ~w we have that

〈~z, A~w〉 = 〈A∗~z, ~w〉 . (1)

We have

Theorem 1.1. Let A be an n × m matrix. The the null space N(A) is a subspace of Cm,
C(A) a subspace of Cn. Similarly N(A∗) is a subspace of Cn and C(A∗) a subspace of Cm.
Moreover,

C(A)⊕N(A∗) = Cn

and

C(A∗)⊕N(A) = Cm

where ⊕ denotes the orthogonal sum. In other words the orthogonal complement of C(A) in
Cn is N(A∗) and the orthogonal complement of C(A∗) in Cm is N(A).

Proof. The orthogonal complement of C(A) consists of vectors in Cn that are orthogonal to all
the column vectors of the matrix A which is the same as all the vectors that are perpendicular
to each row of the matrix A∗. Hence C(A)⊥ = N(A∗). That C(A∗)⊥ = N(A) follows in the
same fashion. �

The next problem is whether there is a notion of least squares approximation for complex

matrices. As before we would like to find ~x ∈ Cm such that A~x −~b has the smallest length.
In other words we want to minimize

‖A~x−~b‖2 .
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We claim that the optimizing ~x is such that A~x −~b is perpendicular to the column space of

A. Assuming this, we have that A~x−~b must be in the null space of A∗, i.e.,

A∗A~x = A∗~b .

This are once again the normal equations. What about projections? Assume that V is a
complex subspace of Cn whose complex dimension is m. We choose a basis of in general
complex vectors in V and create a matrix with these vectors as column vectors. Given a

vector ~b ∈ Cn we can try to write this vector as a vector in V , i.e., the column space of A and
a vector perpendicular to V . I.e., we have to find ~x so that

A~x−~b ⊥ V .

As before A~x−~b ∈ N(A∗) and hence

A∗A~x = A∗~b .

The matrix A∗A is m×m and has rank m and hence is invertible. Hence

~x = (A∗A)−1A∗~b

and the projection of ~b onto V is given by

A~x = A(A∗A)A∗~b

The matrix P = A(A∗A)A∗ is easily seen to be a projection. In fact we also have that P ∗ = P .

2. Unitary Matrices

The unitary matrices are the analog of complex matrices but in Cn. Imagine you are given
n orthonormal vectors ~u1, . . . , ~un

〈~uk, ~u`〉 = 0 , k 6= `

〈~uk, ~uk〉 = 1 , k = 1, . . . , n .

The we can form

U =
[
~u1 . . . ~un

]
It is now easy to check that

U∗U = In

and hence

U∗U = In = UU∗ ,

because the matrix U has full rank and hence is invertible. Such matrices are called unitary
matrices. It is straightforward to imitate the Gram-Schmidt procedure and hence any complex
matrix can be written as

A = UR

where U has column vectors that are orthonormal (maybe not n of them) and R is an upper
triangular matrix. Of course, R is complex. As a consequence, the column vectors of U form
an orthonormal basis for the column space of A. The projection onto this column space is
given by UU∗ (note that U∗U = I.). The least square solution is then given by

R~x = Q∗~b .
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3. Eigenvalues and Eigenvectors

Recall that a nonzero vector ~v is an eigenvector of the n× n matrix A, if

A~v = λ~v .

The number λ is called the eigenvalue. We know that if ~v is an eigenvector then A− λI is a
singular matrix and hence

det(A− λI) = 0 .

The characteristic polynomial pA(λ) = det(A− λI) is a polynomial with complex coefficients
and hence we can factor it into linear factors

pA(λ) = (−1)n(λ− λ1) · · · (λ− λn)

where the roots are the eigenvalues. The following theorem is a precursor to what is known
as Schur factorization, but somewhat simpler.

Theorem 3.1. Let A be any complex n × n matrix. There exists an invertible n × n matrix
V and an upper triangular matrix T such that

A = V TV −1 .

The diagonal elements of T are precisely the eigenvalues.

Proof. The matrix A has an eigenvalue λ1 and hence there exists a vector ~v1 6= ~0 such that
A~v1 = λ1~v1. Now extend ~v1 to a basis by choosing vectors ~w2, . . . , ~wn such that ~v1, ~w2, . . . , ~wn

form a basis for Cn. Now Consider the matrix V1 = [~v1, ~w2, . . . , ~wn] and note that

AV1 = [λ1~v1, A~w2, . . . , A~wn] .

We are going to write the right side as

V1V
−1
1 [λ1~v1, A~w2, . . . , A~wn] = V1

[
λ1V

−1~v1, A~w2, . . . , A~wn

]
.

The matrix V1 is invertible (why?). The vector λ1V
−1~v1 can be written as

c1
c2
.
.
.
cn


and hence the first column of the vector

V1


c1
c2
.
.
.
cn

 = c1~v1 + c2 ~w2 + · · ·+ cn ~wn

must be equal to λ1~v1. Since the vectors ~v1, ~w2, . . . , ~wn are linearly independent we must have
that c1 = λ1 and all the other c’s equal to 0. Hence[

λ1V
−1~v1, A~w2, . . . , A~wn

]
= [λ1~e1, A~w2, . . . , A~wn]
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where ~e1 is the first element of the canonical basis. Thus, we have shown that

AV1 = V1T1

where T1 is of the form 
λ1 ∗ . . . ∗
0 ∗ . . . ∗
0 ∗ . . . ∗
0 ∗ . . . ∗


We write

T1 =

[
λ1 ~∗T
~0 A1

]
where A1 is an (n − 1) × (n − 1) matrix and ~∗ denotes some vector whose precise form is
irrelevant for our purposes. Now we apply the same procedure again to the matrix A1 and we
find an invertible (n− 1)× (n− 1) matrix W1 such that

A1W2 = W2S2

where

S2 =

[
µ2 ~∗T
0 A2

]
,

where A2 is an (n− 2)× (n− 2) matrix and µ2 is an eigenvalue of A1. Define

V2 =

[
1 ∗
0 W2

]
and note that

T1V2 =

[
λ1 ~∗T
~0 A1W2

]
=

[
λ1 ~∗T
~0 W2S2

]
= V2

[
λ1 ~∗T
~0 S2

]
Thus,

AV1V2 = V1T1V2 = V1V2T2

where

T2 =

[
λ1 ~∗T
~0 S2

]
=

 λ1 ∗ ~∗T

0 µ2 ~∗T
~0 ~0 A2

 .

Continuing in this fashion we arrive at

AV1 · · ·Vn = V1 · · ·VnT

where T is upper triangular. The matrix V = V1 · · ·Vn is invertible. The fact that the diagonal
elements of T are the eigenvalues follows from the relation

det(A− λI) = det(V TV −1 − λI) = detV (T − λI)V −1 = det(T − λI)

and the fact that the determinant of an upper triangular matrix is the product of the diagonal
elements. �

Here are two consequences.
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Theorem 3.2. Let A be an n× n matrix and denotes its eigenvalues by λ1, . . . , λn. Then

detA = λ1λ2 · · ·λn
and

TrA :=
n∑

j=1

aii =
n∑

j=1

λj .

Proof. The first relation follows from

detA = detV TV −1 = detT = λ1λ2 · · ·λn .
The second relation follows from the fact that for any two n× n matrices A,B,

TrAB = TrBA

which is very easy to see. Now

TrA = TrV TV −1 = TrV −1V T = TrT .

This proves the theorem. �

We continue discussing Cayley’s theorem. If p(λ) is a polynomial of degree n we may
consider p(A) where A is an n× n matrix. The polynomial can be written as

p(λ) =
n∑

j=0

cjλ
j = c0 + c1λ+ c2λ

2 + · · ·+ cnλ
n

and then we define
p(A) = c0In + c1A+ c2A

2 + · · ·+ cnA
n .

Over the complex numbers we may factor p(λ) and write

p(λ) = a(λ− λ1)(λ− λ2) · · · (λ− λn)

where λ1, . . . λn are the roots of the polynomial p(λ) and a is some constant. It is easy to see
that

p(A) = a(A− λ1In)(A− λ2In) · · · (A− λnIn) .

Theorem 3.3. Let A be an n×n matrix and p(λ) := det(A−λIn) its characteristic polynomial.
Then

p(A) = 0

i.e., A is a ‘root’ of its characteristic polynomial.

False proof. The following is nonsensical (why?)

p(A) = det(A− AIn) = det(A− A) = det0 = 0

�

Proof. We write the characteristic polynomial in the form

p(λ) = c0 + c1λ+ · · ·+ cnλ
n

and note that

c0In + c1A+ · · ·+ cnA
n = V (c0In + c1T + · · ·+ cnT

n)V −1

and hence it suffices to prove the theorem for the upper triangular matrix T which amounts
to showing that

(T − λ1In)(T − λ2In) · · · (T − λnIn) = 0 .
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The first column of the upper triangular matrix (T − λ1In) consists only of zeros and the
matrix (T − λ2In) is upper triangular but the second entry of the second column is zero. The
first two columns of the product (T − λ1In)(T − λ2In) must therefore be zero. The same
reasoning shows that (T − λ1In)(T − λ2In)(T − λ3In) has the first three columns vanishing
and so forth. This proves Cayley’s theorem. �

An interesting aspect of Cayley’s theorem is that the first n powers of an n × n matrix
are linearly dependent. Thus, any power of A can be written as a linear combination of
In, A, . . . , A

n−1, which is somewhat surprising. Example: Consider the Fibonacci matrix

A =

[
1 1
1 0

]
whose characteristic polynomial is λ2 − λ− 1. Hence we have that

A2 = I + A

So

A3 = A+ A2 = A+ I + A = 2A+ I

A4 = 2A2 + A = 2(A+ I) + A = 3A+ 2I

From which we glean the structure

An = anA+ an−1I .

Indeed,

An+1 = anA
2 + an−1A = (an + an−1)A+ anI

and we get the recursion an+1 = an + an−1 which is the Fibonacci sequence. Of course, while
this is interesting from a theoretical point of view, it is less useful in practice.

4. Hermitean matrices

A matrix A is hermitean if A∗ = A. This is one the important classes of matrices chiefly
because the ubiquitous in applications, like quantum mechanics and the can be diagonalized.
Recall from (1) that for a hermitean matrix 〈~z, A~w〉 = 〈A~z, ~w〉.

Lemma 4.1. The eigenvalues of a hermitean matrix are real.

Proof. Suppose λ is an eigenvalue of A with eigenvector ~w. Then

λ〈~w, ~w〉 = 〈~w, λ~w〉 = 〈~w,A~w〉 .
A similar computation shows that

λ〈~w, ~w〉 = 〈 ~Aw, ~w〉 = 〈~w,A∗ ~w〉

and since A = A∗ it follows that λ〈~w, ~w〉 = λ〈~w, ~w〉 and the eigenvalue is real. �

The notion of invariant subspace is a useful one.

Definition 4.2. A subspace V ⊂ Cn is invariant under A, if for every ~w ∈ V , A~w ∈ V .

Another key fact about hermitean matrices is the following

Lemma 4.3. Let V ⊂ Cn be a subspace invariant under A. The its orthogonal complement
V ⊥ is also invariant under A.
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Proof. Pick any ~z ∈ V ⊥ and any ~w ∈ V . Then

〈~w,A~z〉 = 〈A~w, ~z〉 = 0

since A~w ∈ V . Since ~w ∈ V is arbitrary, A~z ∈ V ⊥. �

Here is a statement that shows why the invariant subspace notion is useful.

Lemma 4.4. Let A be any complex n × n matrix and assume that V is invariant under A.
Set k = dimV . There exists a unitary matrix U such that

U∗AU =

[
B C
0 D

]
where B is a k× k matrix, C a k× n− k matrix and D a (n− k)× (n− k) matrix. The zero
matrix at the bottom is a (n− k)× k matrix. Note that V ⊥ is not invariant under A, because
we do not assume that A = A∗.

Proof. Pick an orthonormal basis ~u1, . . . , ~uk in V and an orthonormal basis ~uk+1, . . . , ~un in
V ⊥. Since V is invariant under A we have for 1 ≤ j ≤ k

A~uj =
∑
`=1k

Bj`~u`

for some coefficients Bj`. If k + 1 ≤ j ≤ n we have that

A~uj =
k∑

`=1

Cj`~u` +
n∑

`=k+1

Dj`~u` .

Form the matrix
U = [~u1, . . . , ~un] ,

which is a unitary matrix, and note that

AU = [A~u1, . . . , A~uk, A~uk+1~un] = [~u1, . . . , ~un]

[
B C
0 D

]
= U

[
B C
0 D

]
,

which proves the claim. �

As a corollary we have that

Theorem 4.5. Let A be a hermitean n × n matrix and V ⊂ Cn a k-dimensional subspace
invariant under A. Then there exists a unitary matrix U such that U∗AU has the form

U∗AU =

[
B 0
0 D

]
.

The k × k matrix B and the (n− k)× (n− k) matrix D are both hermitean.

Proof. Both subspaces V and V ⊥ are invariant under A and hence the result follows from the
previous lemma.

�


