STANDARD FORMULA FOR DETERMINANTS

Imagine a set of n distinct objects. In order to distinguish them we give each one of them a label. A permutation is now a relabeling. Alternatively, consider the set $S=\{1,2, \ldots, n\}$. A permutation $\pi: S \rightarrow S$ is a function which one to one and hence onto (why?). We can express permutations in the following way

$$
\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
\pi(1) & \pi(2) & \ldots & \pi(n-1) & \pi(n)
\end{array}\right)
$$

E.g.

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

corresponds to the function $\pi(1)=2, \pi(2)=4, \pi(3)=1$ and $\pi(4)=3$. The set of permutations of n objects is called the symmetric group and is denoted by \mathcal{S}_{n}.

Note that this function is one to one. Let $\pi \in \mathcal{S}_{n}$. Associated with this is a matrix P_{π} which is the matrix that emerges from the identity by permuting the columns using the permutation π. On has

Theorem 0.1. Consider an $n \times n$ matrix A real or complex and denote the matrix elements by $a_{i j}$ where both i and j vary between 1 and n. Then

$$
\operatorname{det} A=\sum_{\pi \in \mathcal{S}_{n}}\left(\operatorname{det} P_{\pi}\right) a_{1 \pi(1)} \cdots a_{n \pi(n)}
$$

In order to show this we call the right side of this equation $f(A)$. If $A=I$ we see that the only non-zero product appears when π is the identity permutation and hence $f(I)=1$ since $\operatorname{det} I=1$. Let A^{\prime} be the matrix derived from A by exchanging two rows. We have to show that $f\left(A^{\prime}\right)=-f(A)$. To see this we observe that

$$
a_{1 \pi(1)}^{\prime} a_{2 \pi(2)}^{\prime} \cdots a_{n \pi(n)}^{\prime}=a_{2 \pi(1)} a_{1 \pi(2)} \cdots a_{n \pi(n)}=a_{1 \pi(2)} a_{2 \pi(1)} \cdots a_{n \pi(n)}
$$

Denote by σ the permutation that exchanges 1 and 2 and leaves all others fixed. Thus, we may write

$$
a_{1 \pi(1)}^{\prime} a_{2 \pi(2)}^{\prime} \cdots a_{n \pi(n)}^{\prime}=a_{1 \pi(\sigma(1))} a_{2 \pi(\sigma(2))} \cdots a_{n \pi(\sigma(n))}=a_{\pi \circ \sigma(1)} \cdots a_{\pi \circ \sigma(n)}
$$

Further

$$
P_{\pi \circ \sigma}=P_{\pi} P_{\sigma}
$$

and so

$$
\operatorname{det} P_{\pi \circ \sigma}=\operatorname{det} P_{\pi} \operatorname{det} P_{\sigma}=-\operatorname{det} P_{\pi}
$$

Thus

$$
f\left(A^{\prime}\right)=-\sum_{\pi \in \mathcal{S}_{n}} \operatorname{det} P_{\pi \circ \sigma} a_{\pi \circ \sigma(1)} \cdots a_{\pi \circ \sigma(n)}
$$

and since $\pi \circ \sigma$ runs through all the permutations precisely once we have that

$$
f\left(A^{\prime}\right)=-\sum_{\pi \in \mathcal{S}_{n}} \operatorname{det} P_{\pi} a_{\pi(1)} \cdots a_{\pi(n)}=-f(A)
$$

That $f(A)$ is linear in each row is obvious. We have seen in the lecture that the these three properties determine $f(A)$ uniquely and hence $f(A)=\operatorname{det} A$. From this formula we can recover our previous results concerning the Trace of a matrix and its determinant. Consider

$$
\operatorname{det}(A-\Lambda I)=\sum_{\pi \in \mathcal{S}_{n}} \operatorname{det} P_{\pi}\left(a_{1 \pi(1)}-\lambda \delta_{1 \pi(1)}\right) \cdots\left(a_{n \pi(n)}-\lambda \delta_{n \pi(n)}\right)
$$

Expanding this expression in powers of λ we see that the constant, i.e., the term independent of λ equals $\operatorname{det} A$. The term proportional to λ is given by

$$
-\lambda \sum_{\pi \in \mathcal{S}_{n}} \operatorname{det} P_{\pi} \sum_{i=1}^{n} \delta_{1 \pi(1)} \cdots \delta_{(i-1) \pi(i-1)} a_{i \pi(i)} \delta_{(i+1) \pi(i+1)} \cdots \delta_{n \pi(n)}
$$

This term is non-zero only if π is the identity permutation and hence this term equals

$$
-\lambda \sum_{i=1}^{n} a_{i i}=-\lambda \operatorname{Tr} A
$$

Recall that the characteristic polynomial can be factored

$$
\operatorname{det}(A-\lambda I)=(-1)^{n}\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

and by expanding we get that the constant term, i.e., the term independent of λ is given by $\lambda_{1} \cdots \lambda_{n}$ and the term proportional to λ is given by

$$
-\lambda \sum_{i=1}^{n} \lambda_{i} .
$$

Thus we recover the identities

$$
\lambda_{1} \cdots \lambda_{n}=\operatorname{det} A
$$

and

$$
\sum_{i=1}^{n} \lambda_{i}=\operatorname{Tr} A
$$

