THE DISCRETE FOURIER TRANSFORM

1. Roots of 1

First a little review about complex numbers, namely roots of 1 . You know of course that the equation $x^{2}=1$ has two roots, +1 and -1 . If we consider the equation $x^{4}=1$ and look for solution in the complex domain we find the four roots $1, i,-1,-i$ where you recall that $i^{2}=-1$. Thus we can factor

$$
x^{4}-1=(x-1)(x-i)(x+1)(x+i) .
$$

The roots of the equation $x^{3}-1=0$ are given by $1, \frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}$. and hence

$$
x^{3}-1=(x-1)\left(x-\frac{-1+i \sqrt{3}}{2}\right)\left(x+\frac{1+i \sqrt{3}}{2}\right) .
$$

Things become much clearer if we jot down these points in the complex plane. Th roots of the equation $x^{4}-1=0$ are on the unit circle and are the corners of a square and the roots $x^{3}-1=0$ are also on the unit circle and are the corners of an equilateral triangle.

Using a bit of trigonometry we find that the roots of $x^{4}-1=0$ can be written as

$$
\begin{gathered}
1=\cos 0+i \sin 0=e^{i 0}, i=\cos (\pi / 2)+i \sin (\pi / 2)=e^{i \pi / 2} \\
-1=\cos (\pi)+i \sin (\pi)=e^{i \pi},-i=\cos (3 \pi / 2)+i \sin (3 \pi / 2)=e^{i 3 \pi / 2}
\end{gathered}
$$

and likewise, the roots of the equation $x^{3}-1=0$ can be written as

$$
\begin{gathered}
1=\cos 0+i \sin 0=e^{i 0}, \frac{-1+i \sqrt{3}}{2}=\cos (2 \pi / 3)+i \sin (2 \pi / 3)=e^{i 2 \pi / 3} \\
\frac{-1-i \sqrt{3}}{2}=\cos (4 \pi / 3)+i \sin (4 \pi / 3)=e^{i 4 \pi / 3}
\end{gathered}
$$

For the general equation $x^{n}-1=0$ we get the roots

$$
1, e^{2 \pi i \frac{1}{n}}, e^{2 \pi i \frac{2}{n}}, e^{2 \pi i \frac{3}{n}}, \ldots, e^{2 \pi i \frac{n-1}{n}}
$$

To abbreviate the notation we set

$$
\omega_{n}=e^{2 \pi i \frac{1}{n}}
$$

and can write the set of roots as

$$
K^{\prime}=\left\{1, \omega_{n}, \omega_{n}^{2}, \omega_{n}^{3} \ldots, \omega_{n}^{n-1}\right\}
$$

The following observation is important for what follows: If we multiply each element of K^{\prime} by ω_{n} we get the same set back. In fact multiplying each element of K^{\prime} in the order given above by ω_{n} permutes these elements cyclically.

2. The permutation matrix T

The $n \times n$ matrix T is is the matrix that maps the vector $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ to the vector $\left[x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right]$. The matrix T can be written as

$$
T=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
. & . & . & \ldots & . & . \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

it is clear that $T^{n}=I$. To compute the eigenvalues of T we have several avenues. One is to compute the characteristic polynomial, which is a bit tedious, but there is a much better way by systematically 'guessing' the eigenvectors. One obvious one is the vector consisting of 1s. Let us call it \vec{v}_{0}. Another, which gets us closer to the idea is the vector, call it \vec{v}_{1}, whose entries are $1, \omega_{n}, \omega_{n}^{\prime} \ldots, \omega_{n}^{n-1}$. Note that the vector $T \vec{v}_{1}$ consists of the vector whose entries are $\omega_{n}^{n-1}, 1, \omega_{n}, \ldots, \omega_{n}^{n-2}$. If we recall that $\omega_{n}^{n-1}=\omega_{n}^{-1}$ we get that $T \vec{v}_{1}=\omega_{n}^{-1} \vec{v}_{1}$. Hence we see that \vec{v}_{1} is another eigenvector. It is complex and obviously linearly independent from the vector \vec{v}_{0}. Let us pause for the moment and look at the structure of these two vectors. The second had entries that are powers of the root of 1 given by ω_{n}. The first vector is similar it is can be thought of as consisting of powers of another root of 1 , namely 1 . Hence we may continue and consider the vector \vec{v}_{2} whose entries are given by the powers of ω_{n}^{2}. That is the vector is

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
\omega_{n}^{2} \\
\left(\omega_{n}^{2}\right)^{2} \\
\left(\omega_{n}^{2}\right)^{3} \\
\cdot \\
\cdot \\
\left(\omega_{n}^{2}\right)^{n-1}
\end{array}\right]
$$

Once more

$$
T \vec{v}_{2}=\left[\begin{array}{c}
\left(\omega_{n}^{2}\right)^{n-1} \\
1 \\
\omega_{n}^{2} \\
\left(\omega_{n}^{2}\right)^{2} \\
\left(\omega_{n}^{2}\right)^{3} \\
\cdot \\
\cdot \\
\left(\omega_{n}^{2}\right)^{n-2}
\end{array}\right]=\left(\omega_{n}^{2}\right)^{n-1}\left[\begin{array}{c}
1 \\
\omega_{n}^{2} \\
\left(\omega_{n}^{2}\right)^{2} \\
\left(\omega_{n}^{2}\right)^{3} \\
\cdot \\
\cdot \\
\left(\omega_{n}^{2}\right)^{n-1}
\end{array}\right]=\left(\omega_{n}^{2}\right)^{-1} \vec{v}_{2}
$$

Continuing this way we find that the eigenvalues of T are given by $1, \omega_{n}, \omega_{n}^{2}, \cdots, \omega_{n}^{n-1}$ and the eigenvectors arranged into a matrix are given by

$$
F_{n}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \ldots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \left(\omega_{n}^{2}\right)^{2} & \left(\omega_{n}^{3}\right)^{2} & \ldots & \left(\omega_{n}^{n-1}\right)^{2} \\
\dot{1} & \cdot & \cdot & \dot{\cdot} & \dot{\cdot} & \left(\omega_{n}^{2}\right)^{n-1} \\
1 & \left.\omega_{n}^{3}\right)^{n-1} & \ldots & \left(\omega_{n}^{n-1}\right)^{n-1}
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \ldots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \ldots & \omega_{n}^{2(n-1)} \\
\cdot & \cdot & \dot{\cdot} & \dot{\cdot} & \ldots & \dot{\cdot} \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \ldots & \omega_{n}^{(n-1)^{2}}
\end{array}\right]
$$

We call this the Fourier matrix. Lets work all this out when $n=4$. The roots are, as we have seen, $1, i, i^{2}, i^{3}, i^{4}$ or $1, i,-1,-i$. Then the matrix of eigenvectors is given by

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & i^{2} & i^{3} \\
1 & \left(i^{2}\right) & \left(i^{2}\right)^{2} & \left(i^{2}\right)^{3} \\
1 & \left(i^{3}\right) & \left(i^{3}\right)^{2} & \left(i^{3}\right)^{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

Note that the column vectors of this matrix are orthogonal with respect to the inner product and hence, normalizing these vectors, we get

$$
U=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{1}\\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right]
$$

a unitary matrix. One computes easily that $T U=U D$ where

$$
D=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & i
\end{array}\right]
$$

3. Why discrete Fourier transform

We stay with the four dimensional situation we talked about $\mathrm{t}=\mathrm{in}$ the previous section. We have seen that

$$
T=U D U^{*}
$$

and one easily computes that

$$
U^{*}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right]
$$

noting that $U^{T}=U$. The four eigenvectors which are the column vectors in U we denoted by $\vec{v}_{0}, \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. They are orthonormal with respect to the inner product

$$
\langle\vec{z}, \vec{w}\rangle=\sum \bar{z}_{i} w_{i} .
$$

Given and vector \vec{x} real or otherwise, we compute the Fourier Coefficients

$$
\left\langle\vec{v}_{0}, \vec{x}\right\rangle,\left\langle\vec{v}_{1}, \vec{x}\right\rangle,\left\langle\vec{v}_{2}, \vec{x}\right\rangle,\left\langle\vec{v}_{3}, \vec{x}\right\rangle
$$

then

$$
\vec{x}=\left\langle\vec{v}_{0}, \vec{x}\right\rangle \vec{v}_{0}+\left\langle\vec{v}_{1}, \vec{x}\right\rangle \vec{v}_{1}+\left\langle\vec{v}_{2}, \vec{x}\right\rangle \vec{v}_{2}+\left\langle\vec{v}_{3}, \vec{x}\right\rangle \vec{v}_{3}
$$

then

$$
T \vec{x}=\left\langle\vec{v}_{0}, \vec{x}\right\rangle \vec{v}_{0}-i\left\langle\vec{v}_{1}, \vec{x}\right\rangle \vec{v}_{1}-\left\langle\vec{v}_{2}, \vec{x}\right\rangle \vec{v}_{2}+i\left\langle\vec{v}_{3}, \vec{x}\right\rangle \vec{v}_{3} .
$$

4. Fast Fourier transform

The Fourier matrix is not sparse and hence to compute $F_{n} \vec{x}$ it takes about n^{2} operations. We shall show by arranging the computation in a clever way, that it takes much fewer steps. To describe the result we set $n=2^{k}$.

Theorem 4.1. Let $\omega_{n}=e^{\frac{2 \pi i}{n}}$ with $n=2^{k}$. One can calculate $F_{n} \vec{x}$ for any vector $\vec{x} \in \mathbb{C}^{n}$ in $4 \cdot 2^{k} k=4 n \log _{2}(n)$ operations.

Consider the case where $n=2 m$. Given an arbitrary n vector \vec{x}. Write it in the form $\vec{x}=\vec{x}_{0}$ and \vec{x}_{1} where \vec{x}_{0} contains only the entries of \vec{x} with even index and likewise \vec{x}_{1} the entries with odd index. It we write $\vec{y}_{0}=\left[x_{0}, x_{2}, \ldots, x_{2(m-1)}\right]$ and $\vec{y}_{1}=\left[x_{1}, x_{3}, \ldots, x_{2 m-1}\right]$ then we can write the vector

$$
\left[\begin{array}{l}
\vec{y}_{0} \\
\vec{y}_{1}
\end{array}\right]=P \vec{x}
$$

where P is the permutation matrix that maps the indices $(0,2, \ldots, 2(m-1))$ to $(0,1, \ldots, m-1)$ and the indices $(1,2, \ldots 2 m-1)$ to the indices $(m, \ldots, 2 m-1)$. The point now is that

$$
\begin{gathered}
{\left[F_{2 m} \vec{x}\right]_{j}=\sum_{\ell=0}^{2 m-1} \omega_{2 m}^{j \ell} x_{\ell}=\sum_{\ell=0}^{m-1} \omega_{2 m}^{j 2 \ell} x_{2 \ell}+\sum_{\ell=0}^{m-1} \omega_{2 m}^{j(2 \ell+1)} x_{2 \ell+1}} \\
=\sum_{\ell=0}^{m-1} \omega_{m}^{j \ell} x_{2 \ell}+\omega_{2 m}^{j} \sum_{\ell=0}^{m-1} \omega_{m}^{j \ell} x_{2 \ell+1}
\end{gathered}
$$

using that

$$
\omega_{2 m}^{2 j \ell}=e^{\frac{2 \pi i 2 l \ell}{2 m}}=e^{\frac{2 \pi i l l}{m}}=\omega_{m}^{j \ell} .
$$

We can rewrite this using the vectors \vec{y}_{0} and \vec{y}_{1} (which are m vector) as

$$
\left[F_{2 m} \vec{x}\right]_{j}=\left[F_{m} \vec{y}_{0}\right]_{j}+\omega_{2 m}^{j}\left[F_{m} \vec{y}_{1}\right]_{j} .
$$

As matrices we can write this as

$$
\left[\begin{array}{cc}
I & D_{m} \\
I & -D_{m}
\end{array}\right]\left[\begin{array}{cc}
F_{m} & 0 \\
0 & F_{m}
\end{array}\right]
$$

where D_{m} is the diagonal matrix with the elements $1, \omega_{m}, \omega_{m}^{2}, \ldots, \omega_{m}^{m-1}$ on the diagonal. These entries cover the indices $j=0, \ldots, m-1$. The when $j \geq m$, then $\omega_{2 m}^{j}=-\omega_{2 m}^{j-m}$ and hence the negative sign in front of D_{m} in the second row. Hence we have that

$$
F_{2 m}=\left[\begin{array}{cc}
I & D_{m} \\
I & -D_{m}
\end{array}\right]\left[\begin{array}{cc}
F_{m} & 0 \\
0 & F_{m}
\end{array}\right] P
$$

Computing $P \vec{x}$ does not use any operations, we just group the even indexed and odd indexed elements together. This is achieved by a suitable input routine. Let $c(m)$ be the smallest number of steps to compute $F_{m} \vec{y}$. That gives us $2 c(m)$ steps to compute

$$
\left[\begin{array}{cc}
F_{m} & 0 \\
0 & F_{m}
\end{array}\right] P \vec{x}
$$

To compute $D_{m} F_{m}$ that takes another m steps, because D_{m} is diagonal. Hence we need $2 c(m)+m$ steps to compute $F_{2 m} \vec{x}$. In other words, if $c(m)$ denotes the smallest number of steps to compute $F_{m} \vec{y}$ then

$$
c(2 m) \leq 2 c(m)+m
$$

Suppose we pick $n=2^{k}$ then $c\left(2^{k}\right) \leq 2 c\left(2^{k-1}\right)+2^{k-1}$ This leads to a recursion which can be solved with the result that

$$
c\left(2^{k}\right) \leq 2^{k} a_{0}+k 2^{k-1}
$$

Here a_{0} is the number of steps to compute the Fourier transform for a two vector which takes two steps. Thus, if we stick n back in, we get that the multiplication of the Fourier matrix F_{n} with an arbitrary vector takes

$$
n\left(a_{0}+\frac{1}{2} \log _{2} n\right)
$$

step. If we choose $n=2^{20}$ which about a million by million matrix, it takes about $10^{6}\left(a_{0}+10\right)$ which should be compared with the naive computation which would give 10^{12}.

5. Application to differential equations

Consider the system

$$
\frac{d^{2} x_{i}}{d t^{2}}=\omega^{2}\left(x_{i-1}-2 x_{i}+x_{i+1}\right)
$$

where $i=1, \ldots, N$ with the convention that $N+1 \equiv 1$. If we write this in vector form we get that

$$
\frac{d^{2}}{d t^{2}} \vec{X}=\omega^{2}\left[T-2 I+T^{-1}\right] \vec{X}
$$

As an example, take $N=4$. Then we get the equations

$$
\begin{aligned}
& \frac{d^{2} x_{1}}{d t^{2}}=\omega^{2}\left(x_{4}-2 x_{1}+x_{2}\right), \\
& \frac{d^{2} x_{2}}{d t^{2}}=\omega^{2}\left(x_{1}-2 x_{2}+x_{3}\right), \\
& \frac{d^{2} x_{3}}{d t^{2}}{ }_{i}=\omega^{2}\left(x_{2}-2 x_{3}+x_{4}\right), \\
& \frac{d^{2} x_{4}}{d t^{2}}=\omega^{2}\left(x_{3}-2 x_{4}+x_{1}\right) .
\end{aligned}
$$

We have diagonalized T. To stay with this example, we get the eigenvalues

