
THE PERRON-FROBENIUS THEOREM

We state and prove here a simplified version of the Perron-Frobenius Theorem, that has
manifold applications.

Theorem 0.1. Let A be an n×n matrix with strictly positive matrix elements. There exists an
eigenvalue λmax > 0 which is not degenerate and whose eigenvector xmax has strictly positive
components. Moreover, any other eigenvector x of A with non-negative entries is equal to
xmax. Further, if λ is any other eigenvalue of A (which may be complex), then |λ| ≤ λmax.

Let Q be the positive orthant in Rn. Let x ∈ Q, x 6= 0 and set

E(x) = min
i,xi 6=0

(Ax)i
xi

.

We first start with a lemma.

Lemma 0.2. The function E(x) is bounded, in fact

E(x) ≤ max
k

∑
i

aki .

Further, for any x ∈ Q, x 6= 0 we have that

E(Ax) ≥ E(x)

with equality only if x satisfies Ax = E(x)x, i.e., x is an eigenvector.

Proof. The definition of E(x) is equivalent with the statement that E(x) is the largest number
such that

(Ax)i − E(x)xi ≥ 0 , i = 1, . . . , n .

To see that
E(Ax) ≥ E(x) ,

simply note that
[A(Ax− E(x)x)]i ≥ 0 , i = 1, . . . , n

since (Ax)i − E(x)xi ≥ 0, i = 1, . . . , n. This means that

E(Ax) = min
i

(A2x)i
(Ax)i

≥ E(x) .

Note that since A has strictly positive elements and x ∈ Q is not the zero vector we have that
Ax has strictly positive components. Now, suppose that x ∈ Q is not an eigenvector of A.
Then, as noted above, (Ax)i −E(x)xi ≥ 0, i = 1, . . . , n and not all of them are equal to zero.
Hence

[A(Ax− E(x)x)]i > 0 , i = 1, . . . , n

with a strict inequality. Thus E(Ax) > E(x).
Finally to see that E(x) is bounded, note that for any given x ∈ Q, x 6= 0 we have that

min
i,xi 6=0

(Ax)i
xi
≤ (Ax)k

xk
1



2 THE PERRON-FROBENIUS THEOREM

where xk = maxi xi. But then (Ax)k =
∑

i akixi ≤ (
∑

i aki)xk so that

(Ax)k
xk

≤ (
∑
i

aki) .

�

To gather some more information about E(x) we have to introduce the set Σ which is the
intersection of Q and the unit sphere in Rn. The next step is the analytical part of the proof.
The key fact from analysis is that if a function is continuous on a compact set, then it attains
its maximum and minimum on that set. The problem is that E(x) may not be continuous on

the set Σ. Since the ratio (Ax)i
xi

is only defined for i with xi non-zero. What can happen is

that mini
(Ax)i
xi

could jump as one varies the vector x ∈ Q and one or more components vanish

during that process. Thus E is not continuous on Σ, but it is on A(Σ) as we shall show next.

Lemma 0.3. Consider the set A(Σ), i.e., the image of the set Σ under A. This set is closed
and bounded. Moreover, on this set A(Σ) the function E(x) is continuous.

Proof. The set Σ is closed and bounded and hence compact. Multiplication by a matrix is a
continuous operation and hence A(Σ) is also compact. Since A has strictly positive matrix
elements, we have that

min
x∈Σ

(Ax)i ≥ mi > 0, i = 1, . . . , n .

Hence E is continuous on A(Σ). �

Proof of the Theorem. The function E being continuous on A(Σ) and A(Σ) being compact,
attains its maximum on A(Σ). Moreover, since E(Ax) ≥ E(x) it also attains its maximum
on Σ. Lets denote a vector where the maximum attained by z. We have that E(Az) ≥ E(z)
and since E(z) is the maximum, we have that E(Az) = E(z). By the first lemma the vector z
must be an eigenvector. Moreover z has strictly positive components because Az = E(z)z and
the components of Az are strictly positive. We set λmax := E(z). Note that λmax is strictly
positive, for otherwise A would be the zero matrix.

Now let y be any eigenvector of A with eigenvalue λ which could be complex. Then taking
absolute values in the equation λyi =

∑
j aijyj we get using the triangle inequality

|λ||yi| ≤
∑
j

aij|yj| .

Hence

|λ| ≤ min
i,|yi|6=0

∑
j aij|yj|
|yi|

= E(|y|) ≤ λmax

where we denote by |y| the vector that has the components |yi|, i = 1, . . . , n. This proves that
any eigenvalue λ must satisfy |λ| ≤ λmax.

We have to show that λmax has geometric multiplicity one. Suppose that the exists x ∈
Q, x 6= 0 such that Ax = λmaxx. Then x must have strictly positive components. If x and z
are not proportional they span a two dimensional space and hence there are number a, b so
that the vector y := az + bx has a zero component. Then Ay = λmaxy and as before taking
magnitudes

λmax|yi| ≤
∑
j

aij|yj|
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and we conclude as before that
λmax ≤ E(|y|) ≤ λmax

and hence there must be equality. Because λmax ≥ E(A|y|) ≥ E(|y|) = λmax the vector |y|
must be an eigenvector, i.e., A|y| = λmax|y|. But, this means that all the components of |y|
must be strictly positive contradicting the fact that y has a zero component.

What is left is to show that if Ax = λx and x has non-negative components, then λ = λmax

and x is a positive multiple of z. To prove this, we consider the transpose AT which also has
strictly positive matrix elements. Hence we may apply the same reasoning and find a vector
w with strictly positive entries such that ATw = µw, µ > 0. The claim is that µ = λmax. To
see this we compute

µwT z = (ATw)T z = wTAz = λmaxw
T z

and since wT z > 0 we have that µ = λmax. Let x be any eigenvector of A with non-negative
entries, i.e., (Ax)i = λxi, i = 1, . . . , n. Then by the same reasoning, using that w has strictly
positive components, we find that wTx > 0 and hence

λmax = λ .

Since the eigenvalue λmax has geometric multiplicity one, the vector x must be a positive
multiple of z. �

We assumed that the matrix elements aij are strictly positive and we can say a bit more.

Theorem 0.4. Suppose that Ay = λy and |λ| = λmax. Here λ may be complex and and y a
complex vector. Then y = cz where c 6= 0 is in general a complex number. In other words, if
Ay = λy and y is not proportional to z then |λ| < λmax.

Proof. The reasoning is as before. We have

λmax|yi| = |λ||yi| ≤
∑
j

aij|yj|

from which we conclude as before that the vector |y| having the components |yi| is an eigen-
vector with non-negative entries with eigenvalue λmax and hence proportional to z. Hence we
must have the equality

|
∑
j

aijyj| =
∑
j

aij|yj| , i = 1, . . . , n .

The rest follows by an inductive application of the simple lemma below. �

Lemma 0.5. Let a, b > 0. Then

|a+ eiφb| = |a+ b|
implies that eiφ = 1.

Proof. We compute

|a+ eiφb|2 = a2 + b2 + 2ab<eiφ = a2 + b2 + 2ab

from which we get that <eiφ = 1. Since |eiφ| = 1, we have that eiφ = 1.
�


