THE PERRON-FROBENIUS THEOREM

We state and prove here a simplified version of the Perron-Frobenius Theorem, that has manifold applications.

Theorem 0.1. Let A be an $n \times n$ matrix with strictly positive matrix elements. There exists an eigenvalue $\lambda_{\max }>0$ which is not degenerate and whose eigenvector $x_{\max }$ has strictly positive components. Moreover, any other eigenvector x of A with non-negative entries is equal to $x_{\max }$. Further, if λ is any other eigenvalue of A (which may be complex), then $|\lambda| \leq \lambda_{\max }$.

Let Q be the positive orthant in \mathbb{R}^{n}. Let $x \in Q, x \neq 0$ and set

$$
E(x)=\min _{i, x_{i} \neq 0} \frac{(A x)_{i}}{x_{i}}
$$

We first start with a lemma.
Lemma 0.2. The function $E(x)$ is bounded, in fact

$$
E(x) \leq \max _{k} \sum_{i} a_{k i}
$$

Further, for any $x \in Q, x \neq 0$ we have that

$$
E(A x) \geq E(x)
$$

with equality only if x satisfies $A x=E(x) x$, i.e., x is an eigenvector.
Proof. The definition of $E(x)$ is equivalent with the statement that $E(x)$ is the largest number such that

$$
(A x)_{i}-E(x) x_{i} \geq 0, i=1, \ldots, n
$$

To see that

$$
E(A x) \geq E(x)
$$

simply note that

$$
[A(A x-E(x) x)]_{i} \geq 0, i=1, \ldots, n
$$

since $(A x)_{i}-E(x) x_{i} \geq 0, i=1, \ldots, n$. This means that

$$
E(A x)=\min _{i} \frac{\left(A^{2} x\right)_{i}}{(A x)_{i}} \geq E(x)
$$

Note that since A has strictly positive elements and $x \in Q$ is not the zero vector we have that $A x$ has strictly positive components. Now, suppose that $x \in Q$ is not an eigenvector of A. Then, as noted above, $(A x)_{i}-E(x) x_{i} \geq 0, i=1, \ldots, n$ and not all of them are equal to zero. Hence

$$
[A(A x-E(x) x)]_{i}>0, i=1, \ldots, n
$$

with a strict inequality. Thus $E(A x)>E(x)$.
Finally to see that $E(x)$ is bounded, note that for any given $x \in Q, x \neq 0$ we have that

$$
\min _{i, x_{i} \neq 0} \frac{(A x)_{i}}{x_{i}} \leq \frac{(A x)_{k}}{x_{k}}
$$

where $x_{k}=\max _{i} x_{i}$. But then $(A x)_{k}=\sum_{i} a_{k i} x_{i} \leq\left(\sum_{i} a_{k i}\right) x_{k}$ so that

$$
\frac{(A x)_{k}}{x_{k}} \leq\left(\sum_{i} a_{k i}\right)
$$

To gather some more information about $E(x)$ we have to introduce the set Σ which is the intersection of Q and the unit sphere in \mathbb{R}^{n}. The next step is the analytical part of the proof. The key fact from analysis is that if a function is continuous on a compact set, then it attains its maximum and minimum on that set. The problem is that $E(x)$ may not be continuous on the set Σ. Since the ratio $\frac{(A x)_{i}}{x_{i}}$ is only defined for i with x_{i} non-zero. What can happen is that $\min _{i} \frac{(A x)_{i}}{x_{i}}$ could jump as one varies the vector $x \in Q$ and one or more components vanish during that process. Thus E is not continuous on Σ, but it is on $A(\Sigma)$ as we shall show next.

Lemma 0.3. Consider the set $A(\Sigma)$, i.e., the image of the set Σ under A. This set is closed and bounded. Moreover, on this set $A(\Sigma)$ the function $E(x)$ is continuous.

Proof. The set Σ is closed and bounded and hence compact. Multiplication by a matrix is a continuous operation and hence $A(\Sigma)$ is also compact. Since A has strictly positive matrix elements, we have that

$$
\min _{x \in \Sigma}(A x)_{i} \geq m_{i}>0, i=1, \ldots, n
$$

Hence E is continuous on $A(\Sigma)$.
Proof of the Theorem. The function E being continuous on $A(\Sigma)$ and $A(\Sigma)$ being compact, attains its maximum on $A(\Sigma)$. Moreover, since $E(A x) \geq E(x)$ it also attains its maximum on Σ. Lets denote a vector where the maximum attained by z. We have that $E(A z) \geq E(z)$ and since $E(z)$ is the maximum, we have that $E(A z)=E(z)$. By the first lemma the vector z must be an eigenvector. Moreover z has strictly positive components because $A z=E(z) z$ and the components of $A z$ are strictly positive. We set $\lambda_{\max }:=E(z)$. Note that $\lambda_{\max }$ is strictly positive, for otherwise A would be the zero matrix.

Now let y be any eigenvector of A with eigenvalue λ which could be complex. Then taking absolute values in the equation $\lambda y_{i}=\sum_{j} a_{i j} y_{j}$ we get using the triangle inequality

$$
|\lambda|\left|y_{i}\right| \leq \sum_{j} a_{i j}\left|y_{j}\right|
$$

Hence

$$
|\lambda| \leq \min _{i,\left|y_{i}\right| \neq 0} \frac{\sum_{j} a_{i j}\left|y_{j}\right|}{\left|y_{i}\right|}=E(|y|) \leq \lambda_{\max }
$$

where we denote by $|y|$ the vector that has the components $\left|y_{i}\right|, i=1, \ldots, n$. This proves that any eigenvalue λ must satisfy $|\lambda| \leq \lambda_{\max }$.

We have to show that $\lambda_{\max }$ has geometric multiplicity one. Suppose that the exists $x \in$ $Q, x \neq 0$ such that $A x=\lambda_{\max } x$. Then x must have strictly positive components. If x and z are not proportional they span a two dimensional space and hence there are number a, b so that the vector $y:=a z+b x$ has a zero component. Then $A y=\lambda_{\max } y$ and as before taking magnitudes

$$
\lambda_{\max }\left|y_{i}\right| \leq \sum_{j} a_{i j}\left|y_{j}\right|
$$

and we conclude as before that

$$
\lambda_{\max } \leq E(|y|) \leq \lambda_{\max }
$$

and hence there must be equality. Because $\lambda_{\max } \geq E(A|y|) \geq E(|y|)=\lambda_{\max }$ the vector $|y|$ must be an eigenvector, i.e., $A|y|=\lambda_{\max }|y|$. But, this means that all the components of $|y|$ must be strictly positive contradicting the fact that y has a zero component.

What is left is to show that if $A x=\lambda x$ and x has non-negative components, then $\lambda=\lambda_{\max }$ and x is a positive multiple of z. To prove this, we consider the transpose A^{T} which also has strictly positive matrix elements. Hence we may apply the same reasoning and find a vector w with strictly positive entries such that $A^{T} w=\mu w, \mu>0$. The claim is that $\mu=\lambda_{\max }$. To see this we compute

$$
\mu w^{T} z=\left(A^{T} w\right)^{T} z=w^{T} A z=\lambda_{\max } w^{T} z
$$

and since $w^{T} z>0$ we have that $\mu=\lambda_{\max }$. Let x be any eigenvector of A with non-negative entries, i.e., $(A x)_{i}=\lambda x_{i}, i=1, \ldots, n$. Then by the same reasoning, using that w has strictly positive components, we find that $w^{T} x>0$ and hence

$$
\lambda_{\max }=\lambda
$$

Since the eigenvalue $\lambda_{\max }$ has geometric multiplicity one, the vector x must be a positive multiple of z.

We assumed that the matrix elements $a_{i j}$ are strictly positive and we can say a bit more.
Theorem 0.4. Suppose that $A y=\lambda y$ and $|\lambda|=\lambda_{\max }$. Here λ may be complex and and $y a$ complex vector. Then $y=c z$ where $c \neq 0$ is in general a complex number. In other words, if $A y=\lambda y$ and y is not proportional to z then $|\lambda|<\lambda_{\max }$.
Proof. The reasoning is as before. We have

$$
\lambda_{\max }\left|y_{i}\right|=|\lambda|\left|y_{i}\right| \leq \sum_{j} a_{i j}\left|y_{j}\right|
$$

from which we conclude as before that the vector $|y|$ having the components $\left|y_{i}\right|$ is an eigenvector with non-negative entries with eigenvalue $\lambda_{\max }$ and hence proportional to z. Hence we must have the equality

$$
\left|\sum_{j} a_{i j} y_{j}\right|=\sum_{j} a_{i j}\left|y_{j}\right|, i=1, \ldots, n
$$

The rest follows by an inductive application of the simple lemma below.
Lemma 0.5. Let $a, b>0$. Then

$$
\left|a+e^{i \phi} b\right|=|a+b|
$$

implies that $e^{i \phi}=1$.
Proof. We compute

$$
\left|a+e^{i \phi} b\right|^{2}=a^{2}+b^{2}+2 a b \Re e^{i \phi}=a^{2}+b^{2}+2 a b
$$

from which we get that $\Re e^{i \phi}=1$. Since $\left|e^{i \phi}\right|=1$, we have that $e^{i \phi}=1$.

