PRACTICE FINAL EXAM

1. Linear systems of equation

Problem 1: Find the inverse matrix of

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]
$$

Problem 2: Compute L and U for the symmetric matrix

$$
\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.

Problem 3: Consider the subspace of \mathbb{R}^{4} that given by the equation

$$
w+x+y+z=0
$$

Find a basis for this subspace. What is its dimension?

2. Orthogonality

Problem 4: Consider the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & -3 \\
2 & 6 & -2 & 12 \\
2 & 3 & 1 & 3
\end{array}\right]
$$

a) Find a basis for the column space $C(A)$
b) Find a basis for $N(A)$
c) For $C\left(A^{T}\right)$
d) For $N\left(A^{T}\right)$.

Problem 5: Find an orthonormal basis for the subspace of Problem 3.

Problem 6: Consider the two lines in \mathbb{R}^{4}

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Find the distance vector, i.e., between them. Compute its length. (Hint: Formulate this as a least square problem)

Problem 7: Write down three equations for the line $b=C+D t$ to go through $b=7$ at $t=1$, $b=7$ at $t=-1$ and $b=21$ at $t=2$. Find the least square solution $\widehat{x}=(C, D)$.

Problem 8: Find the QR factorization of the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right]
$$

and compute the projection of the vector

$$
\vec{b}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

onto the column space of A

3. Eigenvalues and eigenvectors

Problem 9: A two by two matrix A satisfies the matrix equation

$$
A^{2}-5 A+6 I=0 .
$$

What are the eigenvalues of the matrix? Is it diagonalizable?

Problem 10: Compute $\lim _{k \rightarrow \infty} P^{k}$ where

$$
P=\left[\begin{array}{ll}
\frac{1}{10} & \frac{5}{10} \\
\frac{9}{10} & \frac{5}{10}
\end{array}\right]
$$

Problem 11: Find a singular value decomposition of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Problem 12: Prove or find a counterexample:
a) A set of mutually orthogonal vectors is always linearly independent.
b) If A is an $m \times n$ matrix with linear independent columns, then $A^{T} A$ as invertible.
c) If A is an $m \times n$ matrix with linear independent columns, then $A A^{T}$ as invertible.
d) If A is any $m \times n$ matrix, then A and A^{T} have the same non-zero singular values.
e) If A and B are both $n \times n$ matrices the $A B$ and $B A$ have the same eigenvalues.

