
PRACTICE FINAL EXAM

1. Linear systems of equation

Problem 1: Find the inverse matrix of

A =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 .

Solution: Augmented matrix:

A =


1 0 0 0 | 1 0 0 0
1 1 0 0 | 0 1 0 0
1 2 1 0 | 0 0 1 0
1 3 3 1 | 0 0 0 1

 .

Row reducing to reduced echelon form yields the interesting result

A =


1 0 0 0 | 1 0 0 0
0 1 0 0 | −1 1 0 0
0 0 1 0 | 1 −2 1 0
0 0 0 1 | −1 3 −3 1

 .

Problem 2: Compute L and U for the symmetric matrix

A =


a a a a
a b b b
a b c c
a b c d


Find four conditions on a, b, c, d to get A = LU with four pivots.

Solution: First consider the augmented matrix [A|I]. Using row reduction this matrix reduces
to

[L−1A|L−1] = [U |L−1]
Hence all we have to do is invert L−1. Performing this row reduction yields

U =


a a a a
0 b− a b− a b− a
0 0 c− b c− b
0 0 0 d− c


1
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and

L−1 =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1


which can easily be inverted and yields

L =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1


There are four pivots if and only if a 6= 0 and a 6= b, b 6= c and d 6= c. Now in this case there
is another of computing L. Just compute L = AU−1. The inverse of U one can get through
back substitution.

Problem 3: Consider the subspace of R4 that given by the equation

w + x+ y + z = 0

Find a basis for this subspace. What is its dimension?

Solution: Row reduction is here trivial and we have one pivot and three free variables x, y, z.
Hence we have the general solution

−x− y − z
x
y
z

 = x


−1
1
0
0

+ y


−1
0
1
0

+ z


−1
0
0
1

 .

Hence the vectors 
−1
1
0
0

 ,


−1
0
1
0

 ,


−1
0
0
1

 .

form a basis of this three dimensional space.

2. Orthogonality

Problem 4: Consider the matrix  1 0 2 −3
2 6 −2 12
2 3 1 3


a) Find a basis for the column space C(A)
b) Find a basis for N(A)
c) For C(AT )
d) For N(AT ).



PRACTICE FINAL EXAM 3

Solution: Row reduction leads to following reduced echelon form 1 0 2 −3
0 1 −1 3
0 0 0 0


The first two columns are pivot columns and hence 1

2
2

 ,

 0
6
3


is a basis for C(A). The row space does not change and hence

1
0
2
−3

 ,


0
1
−1
3


is a basis for C(AT ). The third and fourth variables are free and hence

−2
1
1
0

 ,


3
−3
0
1


is a basis for N(A). The N(AT ) is the orthogonal complement of C(A) and hence 2

1
−2


is a basis for N(AT ).

Problem 5: Find an orthonormal basis for the subspace of Problem 3.

Solution: We use the Gram Schmidt method.

~A =


−1
1
0
0

 .

Then

~B =


−1
0
1
0

− 1

2


−1
1
0
0

 =
1

2


−1
−1
2
0


Next

~C =


−1
0
0
1

− 1

2


−1
1
0
0

− 1

6


−1
−1
2
0

 = −1

3


1
1
1
−3

 .
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Hence we have the orthonormal basis

~v1 =
1√
2


−1
1
0
0

 , ~v2 =
1√
6


−1
−1
2
0

 , ~v3 =
1

2
√

3


1
1
1
−3



Problem 6: Consider the two lines in R4
1
0
0
0

+ s


1
1
1
1

 and


0
1
0
0

+ t


1
2
3
4


Find the distance vector, i.e., between them. Compute its length. (Hint: Formulate this as a
least square problem)

Solution: We have to choose s, t so that
1
0
0
0

+ s


1
1
1
1

 −


0
1
0
0

− t


1
2
3
4


has minimal length which is the same as minimizing the length of

1 −1
1 −2
1 −3
1 −4

[ st
]
−


−1
1
0
0

 .

We set

A =


1 −1
1 −2
1 −3
1 −4

 ,~b =


−1
1
0
0

 , ~x =

[
s
t

]
.

The normal equations are ATA~x = AT~b or[
4 −10
−10 30

] [
s
t

]
=

[
0
−1

]
which yields s = −1

2
, t = −1

5
. The points of minimal distance on the lines are

1

2


1
−1
−1
−1

 and
1

5


−1
3
−3
−4
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and the difference vector is

1

10


7
−11

1
3


which, as one can easily check, is perpendicular to both lines. The distance is the length of
this vector:

1

10

√
49 + 121 + 1 + 9 =

3√
5

Problem 7: Write down three equations for the line b = C+Dt to go through b = 7 at t = 1,
b = 7 at t = −1 and b = 21 at t = 2. Find the least square solution x̂ = (C,D).

Solution: The vector of the t-values is  1
−1
2


and the b values  7

7
21

 .

If the data would fit a line then we could find C,D such that 1 1
1 −1
1 2

[ C
D

]
=

 7
7
21


There is no such solution and hence we solve the least square problem ATA~x = AT~b[

3 2
2 6

] [
C
D

]
=

[
35
42

]
or

C = 9, D = 4

The best linear fit is thus given by the line

b = 9 + 4t

Problem 8: Find the QR factorization of the matrix

A =


1 1
1 2
1 3
1 4
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and compute the projection of the vector

~b =


1
1
−1
1


onto the column space of A

Solution: Using the Gram-Schmidt method we have

~q1 =
1

2


1
1
1
1

 .

A vector in the column space that is perpendicular to ~q1 is given by

~B =


1
2
3
4

− 5

2


1
1
1
1

 =
1

2


−3
−1
1
3


Hence

Q =


1
2

−3
2
√
5

1
2

−1
2
√
5

1
2

1
2
√
5

1
2

3
2
√
5


and

R = QTA =

[
2 5

0
√

5

]
.

Hence 
1 1
1 2
1 3
1 4

 =


1
2

−3
2
√
5

1
2

−1
2
√
5

1
2

1
2
√
5

1
2

3
2
√
5


[

2 5

0
√

5

]

Recall that QTQ = I but QQT is the projection onto the subspace spanned by the column
vectors of Q. Hence

QQT~b =


1
2

−3
2
√
5

1
2

−1
2
√
5

1
2

1
2
√
5

1
2

3
2
√
5


[

1
− 1√

5

]
=

1

5


4
3
2
1


One can easily check that

~b−QQT~b

is perpendicular to the column vectors of Q.
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3. Eigenvalues and eigenvectors

Problem 9: A two by two matrix A satisfies the matrix equation

A2 − 5A+ 6I = 0 .

What are the eigenvalues of the matrix? Is it diagonalizable?

Solution: We can write

A2 − 5A+ 6I = (A− 2I)(A− 3I) = 0 ,

and hence, if λ is an eigenvalue of A, then it must satisfy the equation

λ2 − 5λ+ 6 = (λ− 3)(λ− 2) = 0 .

Thus, A could have the following eigenvalues: 2, 3, a double eigenvalue 2, 2, or a double
eigenvalue 3, 3. Assume that A has 2 as a double eigenvalue. Then 3 is not an eigenvalue and
hence A − 3I is invertible. Thus 0 = (A − 2I)(A − 3I) implies that A − 2I = 0 or A = 2I.
The same argument shows that if A has 3 as a double eigenvalue, then A = 3I. The other
possibility is the A has both 2 and 3 as eigenvalues. In all these cases, A can be diagonalized.

Problem 10: Compute limk→∞ P
k where

P =

[
1
10

5
10

9
10

5
10

]

Solution: First we find the eigenvalues and eigenvectors for P . One eigenvalue is 1 which is
easy because the matrix is stochastic. The corresponding eigenvector is

~v1 =
1

14

[
5
9

]
Note that I normalized the vector so that the components are probabilities. The other eigen-
value is −4/10. This follows from the fact that the trace of the matrix P is 6/10 which must
be the sum of the eigenvalues. The other eigenvector is

~v2 =

[
1
−1

]
.

Now form

V =

[
5
14

1
9
14
−1

]
so that V −1 =

[
1 1
9
14
− 5

14

]
Now

P k = V

[
1 0
0 (− 4

10
)k

]
V −1

which, as k →∞, converges to

V

[
1 0
0 0

]
V −1 =

[
5
14

1
9
14
−1

] [
1 0
0 0

] [
1 1
9
14
− 5

14

]
=

[
5
14

5
14

9
14

9
14

]



8 PRACTICE FINAL EXAM

Here is another argument without computing the second eigenvector. P is diagonalizable and
hence

P = V DV −1 and therefore P k = V DkV −1

where D is diagonal. As k →∞ only the eigenvalue 1 survives and we have that

lim
k→∞

P k = V

[
1 0
0 0

]
V −1

Now
V =

[
~v ~w

]
where ~w is the second eigenvector. Hence

V

[
1 0
0 0

]
=
[
~v 0

]
Now write

V −1 =

[
~aT

~bT

]
so that

V

[
1 0
0 0

]
V −1 = ~v~aT .

Thus
lim
k→∞

P k = ~v~aT

Now we don’t know ~a. Note, however, that P is stochastic and hence limk→∞ P
k is also

stochastic. Stochastic means that
[1, 1]P = [1, 1]

and hence
[1, 1] = [1, 1]~v~aT = ~aT

since ~v is a probability vector. Hence

lim
k→∞

P k =
1

14

[
5
9

] [
1 1

]
=

1

14

[
5 5
9 9

]
It is interesting that this argument works for general n×n stochastic matrices as long as the

the other eigenvalues in magnitude are strictly smaller than 1. All we need is the eigenvector
~v with P~v = ~v, ~v a probability vector, and then

lim
k→∞

P k =
[
~v ~v · · · ~v

]
Problem 11: Find a singular value decomposition of the matrix

A =

[
1 1 0
0 1 1

]

Solution: First we have to compute either ATA or AAT . The first yields a 3 × 3 matrix
whereas the second yields a 2× 2 matrix [

2 1
1 2

]
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which is easier to deal with. The normalized eigenvectors are

1√
2

[
1
1

]
and

1√
2

[
1
−1

]
and the corresponding eigenvalues are 3 and 1.The singular values are

√
3 and 1. Now one

has to remember the order of the matrices. The way I do it is to think of the singular value
decomposition in the form

A = V ΣUT .

This means that the matrix we computed

AAT = V ΣUTUΣV T = V Σ2V T .

Hence

Σ =

[ √
3 0

0 1

]
, V =

1√
2

[
1 −1
1 1

]
To find U we compute

UT = Σ−1V TA =

[
1√
3

0

0 1

]
1√
2

[
1 1
−1 1

] [
1 1 0
0 1 1

]
=

1√
6

[
1 2 1

−
√

3 0
√

3

]
Hence

A = V ΣUT =
1√
2

[
1 −1
1 1

] [ √
3 0

0 1

]
1√
6

[
1 2 1

−
√

3 0
√

3

]

Problem 12: True or False:

a) A set of mutually orthogonal vectors is always linearly independent. TRUE

To see this take the orthogonal vectors ~v1, . . . , ~vn. One has to show that

c1~v1 + · · ·+ cn~vn = 0

implies that c1 = c2 = · · · = cn = 0. Take the dot product with ~v1 and we get that c1~v1 ·~v1 = 0
all the other dot products vanish. ~v1 should not be zero ( I forgot to write that assumption).
Hence c1 = 0. Now repeat the argument with ~v2 etc.

b) If A is an m× n matrix with linear independent columns, then ATA as invertible. TRUE

The matrix A and ATA have the same null space and since the column vectors of A are
independent we have that N(A) = {0} = N(ATA) and hence ATA is invertible.

c) If A is an m× n matrix with linear independent columns, then AAT as invertible. FALSE

Take the matrix

A =

[
1
1

]
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so that

AAT =

[
1 1
1 1

]
which is not invertible.

d) If A is any m× n matrix, then A and AT have the same non-zero singular values. TRUE

The matrix AAT and ATA have the same non-zero eigenvalues.

e) If A and B are both n× n matrices the AB and BA have the same eigenvalues. TRUE

They have the same non-zero eigenvalues. If AB~v = λ~v and λ 6= 0, then B~v 6= 0 and hence

BA(B~v) = B(AB~v) = λB~v .

AB has a zero eigenvalue if and only if det(AB) = det(BA) = 0, if and only of BA has a zero
eigenvalue.


