PRACTICE FINAL EXAM

1. Linear systems of equation

Problem 1: Find the inverse matrix of

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]
$$

Solution: Augmented matrix:

$$
A=\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & \mid & 0 & 1 & 0 \\
0 \\
1 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Row reducing to reduced echelon form yields the interesting result

$$
A=\left[\begin{array}{llll:|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 3 & -3 & 1
\end{array}\right]
$$

Problem 2: Compute L and U for the symmetric matrix

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.

Solution: First consider the augmented matrix $[A \mid I]$. Using row reduction this matrix reduces to

$$
\left[L^{-1} A \mid L^{-1}\right]=\left[U \mid L^{-1}\right]
$$

Hence all we have to do is invert L^{-1}. Performing this row reduction yields

$$
U=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]
$$

and

$$
L^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

which can easily be inverted and yields

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

There are four pivots if and only if $a \neq 0$ and $a \neq b, b \neq c$ and $d \neq c$. Now in this case there is another of computing L. Just compute $L=A U^{-1}$. The inverse of U one can get through back substitution.

Problem 3: Consider the subspace of \mathbb{R}^{4} that given by the equation

$$
w+x+y+z=0
$$

Find a basis for this subspace. What is its dimension?

Solution: Row reduction is here trivial and we have one pivot and three free variables x, y, z. Hence we have the general solution

$$
\left[\begin{array}{c}
-x-y-z \\
x \\
y \\
z
\end{array}\right]=x\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the vectors

$$
\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

form a basis of this three dimensional space.

2. Orthogonality

Problem 4: Consider the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & -3 \\
2 & 6 & -2 & 12 \\
2 & 3 & 1 & 3
\end{array}\right]
$$

a) Find a basis for the column space $C(A)$
b) Find a basis for $N(A)$
c) For $C\left(A^{T}\right)$
d) For $N\left(A^{T}\right)$.

Solution: Row reduction leads to following reduced echelon form

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & -3 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The first two columns are pivot columns and hence

$$
\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
6 \\
3
\end{array}\right]
$$

is a basis for $C(A)$. The row space does not change and hence

$$
\left[\begin{array}{c}
1 \\
0 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
3
\end{array}\right]
$$

is a basis for $C\left(A^{T}\right)$. The third and fourth variables are free and hence

$$
\left[\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
-3 \\
0 \\
1
\end{array}\right]
$$

is a basis for $N(A)$. The $N\left(A^{T}\right)$ is the orthogonal complement of $C(A)$ and hence

$$
\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]
$$

is a basis for $N\left(A^{T}\right)$.

Problem 5: Find an orthonormal basis for the subspace of Problem 3.

Solution: We use the Gram Schmidt method.

$$
\vec{A}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Then

Next

$$
\vec{B}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right]
$$

$$
\vec{C}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{6}\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-3
\end{array}\right]
$$

Hence we have the orthonormal basis

$$
\vec{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \vec{v}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right], \vec{v}_{3}=\frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-3
\end{array}\right]
$$

Problem 6: Consider the two lines in \mathbb{R}^{4}

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Find the distance vector, i.e., between them. Compute its length. (Hint: Formulate this as a least square problem)

Solution: We have to choose s, t so that

$$
\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]-t\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

has minimal length which is the same as minimizing the length of

$$
\left[\begin{array}{ll}
1 & -1 \\
1 & -2 \\
1 & -3 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

We set

$$
A=\left[\begin{array}{ll}
1 & -1 \\
1 & -2 \\
1 & -3 \\
1 & -4
\end{array}\right], \vec{b}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], \vec{x}=\left[\begin{array}{c}
s \\
t
\end{array}\right]
$$

The normal equations are $A^{T} A \vec{x}=A^{T} \vec{b}$ or

$$
\left[\begin{array}{cc}
4 & -10 \\
-10 & 30
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

which yields $s=-\frac{1}{2}, t=-\frac{1}{5}$. The points of minimal distance on the lines are

$$
\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
-1
\end{array}\right] \text { and } \frac{1}{5}\left[\begin{array}{c}
-1 \\
3 \\
-3 \\
-4
\end{array}\right]
$$

and the difference vector is

$$
\frac{1}{10}\left[\begin{array}{c}
7 \\
-11 \\
1 \\
3
\end{array}\right]
$$

which, as one can easily check, is perpendicular to both lines. The distance is the length of this vector:

$$
\frac{1}{10} \sqrt{49+121+1+9}=\frac{3}{\sqrt{5}}
$$

Problem 7: Write down three equations for the line $b=C+D t$ to go through $b=7$ at $t=1$, $b=7$ at $t=-1$ and $b=21$ at $t=2$. Find the least square solution $\widehat{x}=(C, D)$.

Solution: The vector of the t-values is

$$
\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

and the b values

$$
\left[\begin{array}{c}
7 \\
7 \\
21
\end{array}\right] .
$$

If the data would fit a line then we could find C, D such that

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{c}
7 \\
7 \\
21
\end{array}\right]
$$

There is no such solution and hence we solve the least square problem $A^{T} A \vec{x}=A^{T} \vec{b}$

$$
\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{l}
35 \\
42
\end{array}\right]
$$

or

$$
C=9, D=4
$$

The best linear fit is thus given by the line

$$
b=9+4 t
$$

Problem 8: Find the QR factorization of the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right]
$$

and compute the projection of the vector

$$
\vec{b}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

onto the column space of A

Solution: Using the Gram-Schmidt method we have

$$
\vec{q}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

A vector in the column space that is perpendicular to \vec{q}_{1} is given by

$$
\vec{B}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]-\frac{5}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-3 \\
-1 \\
1 \\
3
\end{array}\right]
$$

Hence

$$
Q=\left[\begin{array}{cc}
\frac{1}{2} & \frac{-3}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{-1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{3}{2 \sqrt{5}}
\end{array}\right]
$$

and

$$
R=Q^{T} A=\left[\begin{array}{cc}
2 & 5 \\
0 & \sqrt{5}
\end{array}\right] .
$$

Hence

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{-3}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{-1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{3}{2 \sqrt{5}}
\end{array}\right]\left[\begin{array}{cc}
2 & 5 \\
0 & \sqrt{5}
\end{array}\right]
$$

Recall that $Q^{T} Q=I$ but $Q Q^{T}$ is the projection onto the subspace spanned by the column vectors of Q. Hence

$$
Q Q^{T} \vec{b}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{-3}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{-1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{3}{2 \sqrt{5}}
\end{array}\right]\left[\begin{array}{c}
1 \\
-\frac{1}{\sqrt{5}}
\end{array}\right]=\frac{1}{5}\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right]
$$

One can easily check that

$$
\vec{b}-Q Q^{T} \vec{b}
$$

is perpendicular to the column vectors of Q.

3. Eigenvalues and eigenvectors

Problem 9: A two by two matrix A satisfies the matrix equation

$$
A^{2}-5 A+6 I=0
$$

What are the eigenvalues of the matrix? Is it diagonalizable?

Solution: We can write

$$
A^{2}-5 A+6 I=(A-2 I)(A-3 I)=0
$$

and hence, if λ is an eigenvalue of A, then it must satisfy the equation

$$
\lambda^{2}-5 \lambda+6=(\lambda-3)(\lambda-2)=0 .
$$

Thus, A could have the following eigenvalues: 2,3 , a double eigenvalue 2,2 , or a double eigenvalue 3,3 . Assume that A has 2 as a double eigenvalue. Then 3 is not an eigenvalue and hence $A-3 I$ is invertible. Thus $0=(A-2 I)(A-3 I)$ implies that $A-2 I=0$ or $A=2 I$. The same argument shows that if A has 3 as a double eigenvalue, then $A=3 I$. The other possibility is the A has both 2 and 3 as eigenvalues. In all these cases, A can be diagonalized.

Problem 10: Compute $\lim _{k \rightarrow \infty} P^{k}$ where

$$
P=\left[\begin{array}{ll}
\frac{1}{10} & \frac{5}{10} \\
\frac{9}{10} & \frac{5}{10}
\end{array}\right]
$$

Solution: First we find the eigenvalues and eigenvectors for P. One eigenvalue is 1 which is easy because the matrix is stochastic. The corresponding eigenvector is

$$
\vec{v}_{1}=\frac{1}{14}\left[\begin{array}{l}
5 \\
9
\end{array}\right]
$$

Note that I normalized the vector so that the components are probabilities. The other eigenvalue is $-4 / 10$. This follows from the fact that the trace of the matrix P is $6 / 10$ which must be the sum of the eigenvalues. The other eigenvector is

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Now form

$$
V=\left[\begin{array}{cc}
\frac{5}{14} & 1 \\
\frac{9}{14} & -1
\end{array}\right] \text { so that } V^{-1}=\left[\begin{array}{cc}
1 & 1 \\
\frac{9}{14} & -\frac{5}{14}
\end{array}\right]
$$

Now

$$
P^{k}=V\left[\begin{array}{cc}
1 & 0 \\
0 & \left(-\frac{4}{10}\right)^{k}
\end{array}\right] V^{-1}
$$

which, as $k \rightarrow \infty$, converges to

$$
V\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] V^{-1}=\left[\begin{array}{cc}
\frac{5}{14} & 1 \\
\frac{9}{14} & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
\frac{9}{14} & -\frac{5}{14}
\end{array}\right]=\left[\begin{array}{cc}
\frac{5}{14} & \frac{5}{14} \\
\frac{9}{14} & \frac{9}{14}
\end{array}\right]
$$

Here is another argument without computing the second eigenvector. P is diagonalizable and hence

$$
P=V D V^{-1} \text { and therefore } P^{k}=V D^{k} V^{-1}
$$

where D is diagonal. As $k \rightarrow \infty$ only the eigenvalue 1 survives and we have that

$$
\lim _{k \rightarrow \infty} P^{k}=V\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] V^{-1}
$$

Now

$$
V=\left[\begin{array}{ll}
\vec{v} & \vec{w}
\end{array}\right]
$$

where \vec{w} is the second eigenvector. Hence

$$
V\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
\vec{v} & 0
\end{array}\right]
$$

Now write

$$
V^{-1}=\left[\begin{array}{c}
\vec{a}^{T} \\
\vec{b}^{T}
\end{array}\right]
$$

so that

$$
V\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] V^{-1}=\vec{v} \vec{a}^{T} .
$$

Thus

$$
\lim _{k \rightarrow \infty} P^{k}=\vec{v} \vec{a}^{T}
$$

Now we don't know \vec{a}. Note, however, that P is stochastic and hence $\lim _{k \rightarrow \infty} P^{k}$ is also stochastic. Stochastic means that

$$
[1,1] P=[1,1]
$$

and hence

$$
[1,1]=[1,1] \vec{v} \vec{a}^{T}=\vec{a}^{T}
$$

since \vec{v} is a probability vector. Hence

$$
\lim _{k \rightarrow \infty} P^{k}=\frac{1}{14}\left[\begin{array}{l}
5 \\
9
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\frac{1}{14}\left[\begin{array}{ll}
5 & 5 \\
9 & 9
\end{array}\right]
$$

It is interesting that this argument works for general $n \times n$ stochastic matrices as long as the the other eigenvalues in magnitude are strictly smaller than 1 . All we need is the eigenvector \vec{v} with $P \vec{v}=\vec{v}, \vec{v}$ a probability vector, and then

$$
\lim _{k \rightarrow \infty} P^{k}=\left[\begin{array}{llll}
\vec{v} & \vec{v} & \cdots & \vec{v}
\end{array}\right]
$$

Problem 11: Find a singular value decomposition of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Solution: First we have to compute either $A^{T} A$ or $A A^{T}$. The first yields a 3×3 matrix whereas the second yields a 2×2 matrix

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

which is easier to deal with. The normalized eigenvectors are

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and } \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and the corresponding eigenvalues are 3 and 1.The singular values are $\sqrt{3}$ and 1 . Now one has to remember the order of the matrices. The way I do it is to think of the singular value decomposition in the form

$$
A=V \Sigma U^{T}
$$

This means that the matrix we computed

$$
A A^{T}=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

Hence

$$
\Sigma=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right], V=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

To find U we compute

$$
U^{T}=\Sigma^{-1} V^{T} A=\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & 0 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
-\sqrt{3} & 0 & \sqrt{3}
\end{array}\right]
$$

Hence

$$
A=V \Sigma U^{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{6}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
-\sqrt{3} & 0 & \sqrt{3}
\end{array}\right]
$$

Problem 12: True or False:
a) A set of mutually orthogonal vectors is always linearly independent. TRUE

To see this take the orthogonal vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$. One has to show that

$$
c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}=0
$$

implies that $c_{1}=c_{2}=\cdots=c_{n}=0$. Take the dot product with \vec{v}_{1} and we get that $c_{1} \vec{v}_{1} \cdot \vec{v}_{1}=0$ all the other dot products vanish. \vec{v}_{1} should not be zero (I forgot to write that assumption). Hence $c_{1}=0$. Now repeat the argument with \vec{v}_{2} etc.
b) If A is an $m \times n$ matrix with linear independent columns, then $A^{T} A$ as invertible. TRUE

The matrix A and $A^{T} A$ have the same null space and since the column vectors of A are independent we have that $N(A)=\{0\}=N\left(A^{T} A\right)$ and hence $A^{T} A$ is invertible.
c) If A is an $m \times n$ matrix with linear independent columns, then $A A^{T}$ as invertible. FALSE Take the matrix

$$
A=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so that

$$
A A^{T}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

which is not invertible.
d) If A is any $m \times n$ matrix, then A and A^{T} have the same non-zero singular values. TRUE The matrix $A A^{T}$ and $A^{T} A$ have the same non-zero eigenvalues.
e) If A and B are both $n \times n$ matrices the $A B$ and $B A$ have the same eigenvalues. TRUE

They have the same non-zero eigenvalues. If $A B \vec{v}=\lambda \vec{v}$ and $\lambda \neq 0$, then $B \vec{v} \neq 0$ and hence

$$
B A(B \vec{v})=B(A B \vec{v})=\lambda B \vec{v}
$$

$A B$ has a zero eigenvalue if and only if $\operatorname{det}(A B)=\operatorname{det}(B A)=0$, if and only of $B A$ has a zero eigenvalue.

