PRACTICE TEST 2

Problem 1: Calculate the eigenvalues of the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 5 & 6 \\
0 & 0 & 3 & 4 \\
0 & 0 & 4 & 3
\end{array}\right]
$$

You do not have to calculate the eigenvectors. Is this matrix diagonalizable?

Problem 2: Show that any hermitean 2×2 matrix can be written in a unique way as

$$
a I_{2}+b \sigma_{1}+c \sigma_{2}+d \sigma_{2}
$$

where

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are the three Pauli matrices and $a, b, c, d \in \mathbb{R}$.

Problem 3: Let A be an $n \times n$ matrix. Compute

$$
\left.\frac{d}{d t} \operatorname{det}(I+t A)\right|_{t=0} .
$$

Problem 4: Solve the three term recursion, i.e., find a_{n},

$$
a_{n+1}=a_{n}+2 a_{n-1}, n=0,1,2, \ldots
$$

with the initial conditions $a_{0}=a_{1}=1$.

Problem 5: Diagonalize the matrix

$$
A=\left[\begin{array}{cc}
2 & 4-3 i \\
4+3 i & 2
\end{array}\right]
$$

by finding a unitary 2×2 matrix such that $A=U D U^{*}$ where D is diagonal.

Problem 6: Diagonalize the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

using orthogonal matrices, i.e., find D diagonal and R orthogonal so that $A=R D R^{T}$. (Hint: Guess one eigenvector.)

Problem 7: Compute the singular value decomposition for the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Problem 8: Solve the differential equation

$$
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t), \vec{x}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right], A=\left[\begin{array}{cc}
-2 & 3 \\
2 & -3
\end{array}\right]
$$

Problem 10: True or false:
a) Every matrix is diagonalizable.
b) If λ is an eigenvalue of the $n \times n$ matrix A and μ an eigenvalue of the $n \times n$ matrix B then $\lambda+\mu$ is an eigenvalue of the matrix $A+B$.c) The eigenvectors of a symmetric matrix can be chosen to be orthogonal.
d) A three by three matrix has the eigenvalues $1,2,3$. Is it diagonalizable.
e) A symmetric four by four matrix has the eigenvalues 1 and 2 . Is it diagonalizable?

