
SOLUTIONS OF PRACTICE TEST 2

Problem 1: Calculate the eigenvalues of the matrix

A =


1 2 3 4
0 2 5 6
0 0 3 4
0 0 4 3


You do not have to calculate the eigenvectors. Is this matrix diagonalizable?

Solution: We have to compute the determinant of

A− λI =


1− λ 2 3 4

0 2− λ 5 6
0 0 3− λ 4
0 0 4 3− λ


Expanding according to the first column (remember the determinant of a matrix equals the
determinant of its transposed) yields for the characteristic polynomial

(1− λ)(2− λ)det

[
3− λ 4

4 3− λ

]
= (1− λ)(2− λ)[(3− λ)2 − 16] .

The roots are easy:

(3− λ)2 − 16 = 0

yields the roots 7, −1 which together with the other 1, 2 yields all the eigenvalues. The
eigenvalues are all distinct and hence we have four linearly independent eigenvectors and
hence the matrix is diagonalizable.

Problem 2: Show that any Hermitean 2× 2 matrix can be written in a unique way as

aI2 + bσ1 + cσ2 + dσ3

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the three Pauli matrices and a, b, c, d ∈ R.

Solution: The general Hermitean matrix is given by[
α γ − iδ

γ + iδ β

]
1
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where α, β, γ, δ are real. We can write this as[
α+β
2

+ α−β
2

γ − iδ
γ + iδ α+β

2
− α−β

2

]
which equals

α + β

2
I2 + γσ1 + δσ2 +

α− β
2

σ3 .

We have to show that this representation is unique. This amounts to show that if

aI2 + bσ1 + cσ2 + dσ3 = 0

then a = b = c = d = 0. Clearly

aI2 + bσ1 + cσ2 + dσ3 =

[
a+ d b− ic
b+ ic a− d

]
=

[
0 0
0 0

]
which implies the result. In other words the Pauli matrices together with the identity form a
basis for the Hermitean matrices.

Problem 3: Let A be an n× n matrix. Compute

d

dt
det(I + tA)

∣∣∣
t=0

.

Solution: Write

det(I + tA) =
∑
π∈Sn

detPπ(δ1π(1) + tA1π(1))(δ2π(2) + tA2π(2)) · · · (δnπ(n) + tAnπ(n))

where δij = 0 when i 6= j and δii = 1. Differentiating with respect to t using the product rule
we get upon setting t = 0

d

dt
det(I + tA)

∣∣∣
t=0

=
∑
π∈Sn

n∑
k=1

detPπδ1π(1)δ2π(2) · · ·Akπ(k) · · · δnπ(n)

=
n∑
k=1

∑
π∈Sn

detPπδ1π(1)δ2π(2) · · ·Akπ(k) · · · δnπ(n)

The element δi,π(i) is not equal to zero only if π(i) = i and hence for

δ1π(1)δ2π(2) · · ·Akπ(k) · · · δnπ(n)
not to be zero requires that π is the identity permutation. Hence the sum over all permutations
collapses to a single term and we get the memorable formula

d

dt
det(I + tA)

∣∣∣
t=0

=
n∑
k=1

Akk = TrA .

Problem 4: Solve the three term recursion, i.e., find an,

an+1 = an + 2an−1 , n = 0, 1, 2, . . .

with the initial conditions a0 = a1 = 1.
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Solution: We write

~Xn =

[
an
an−1

]
and get

~Xn+1 = A ~Xn , ~X1 =

[
1
1

]
where

A =

[
1 2
1 0

]
.

Hence
~Xn = An−1 ~X1 .

The eigenvalues are 2,−1 and the corresponding eigenvectors[
2
1

]
,

[
1
−1

]
Set

V =

[
2 1
1 −1

]
so that

AV = V D or A = V DV −1

where

D =

[
2 0
0 −1

]
.

Hence

An−1 = V Dn−1V −1 =

[
2 1
1 −1

] [
2n−1 0

0 (−1)n−1

]
1

3

[
1 1
1 −2

]
=

1

3

[
2n + (−1)n−1 2n + 2(−1)n

2n−1 + (−1)n 2n−1 + 2(−1)n−1

]
and

An−1 ~X1 =
1

3

[
2n+1 + (−1)n

2n + (−1)n−1

]
,

and an = 2n+1 + (−1)n.

Problem 5: Diagonalize the matrix

A =

[
2 4− 3i

4 + 3i 2

]
by finding a unitary 2× 2 matrix such that A = UDU∗ where D is diagonal.

Solution: The matrix is Hermitean. Its characteristic polynomial is given by

λ2 − 4λ+ (4− (4− 3i)(4 + 3i)) = λ2 − 4λ− 21 = (λ− 2)2 − 25 = 0

so that the roots are given by
7 , −3 .
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For the eigenvectors we solve (A− λI)~v = 0. For the eigenvalue 7 we get the equation

−5a+ (4− 3i)b = 0 , (4 + 3i)a− 5b = 0

These two equations are equivalent (check!) and hence it suffices to consider the first on. If
we set a = (4− 3i) and b = 5 we have a solution[

(4− 3i)
5

]
Normalizing it yields the complex vector

~w1 =
1

5
√

5

[
(4− 3i)

5

]
for the other eigenvalue −3 we have to solve the equation

5a+ (4− 3i)b = 0

which yields

~w2 =
1

5
√

5

[
(4− 3i)
−5

]
The inner product 〈~w1, ~w2〉 = 0 (check!) The matrix

U =
1

5
√

5

[
(4− 3i) (4− 3i)

5 −5

]
is unitary, i.e., UU∗ = U∗U = I (check!) and we have that

AU = U

[
7 0
0 −3

]
or

A = U

[
7 0
0 −3

]
U∗

Problem 6: Diagonalize the matrix

A =

 1 2 3
2 3 1
3 1 2


using orthogonal matrices, i.e., find D diagonal and R orthogonal so that A = RDRT . (Hint:
Guess one eigenvector.)

Solution: The matrix is symmetric. The normalized eigenvector in question is

~v1 =
1√
3

 1
1
1


and the corresponding eigenvalue is 6. Next we compute the characteristic polynomial

det

 1− λ 2 3
2 3− λ 1
3 1 2− λ
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= (1− λ)[(3− λ)(2− λ)− 1]− 2[2(2− λ)− 3] + 3[2− 3(3− λ)]

= (1− λ)[5− 5λ+ λ2]− 2[1− 2λ] + 3[−7 + 3λ]

= 5− 5λ+ λ2 − 5λ+ 5λ2 − λ3 − 2 + 4λ− 21 + 9λ

= −λ3 + 6λ2 + 3λ− 18

Dividing by (λ− 6) yields

[−λ3 + 6λ2 + 3λ− 18] : (λ− 6) = −λ2 + 3

and the eigenvalues are 6,
√

3 and −
√

3. To compute the eigenvector for
√

3 we row reduce 1−
√

3 2 3

2 3−
√

3 1

3 1 2−
√

3


to  −2 2(1 +

√
3) 3(1 +

√
3)

0 2 1 +
√

3
0 0 0


which yields the normalized eigenvector

1

2
√

3

 √
3− 1

−
√

3− 1
2


Repeating the computation for the eigenvalue −

√
3 yields

1

2
√

3

 −√3− 1√
3− 1
2


Hence we have that

A = [~v1, ~v2, ~v3]

 6 0 0

0
√

3 0

0 0 −
√

3

 ~vT1
~vT2
~vT3


Problem 7: Compute the singular value decomposition for the matrix

A =

[
1 1 0
0 1 1

]
.

Solution: The matrix has rank 2. There are two possible ways to start. Either we diagonalize
ATA or AAT , both yield the singular values. The second possibility is easier since the matrix
is 2× 2 and not 3× 3.

AAT =

[
2 1
1 2

]
The normalized eigenvectors are

~u1 =
1√
2

[
1
1

]
, ~u2 =

1√
2

[
−1
1

]
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These vectors ~u1, ~u2 are an orthonormal basis for the column space of A. Next we find and
orthonormal basis for the column space for AT by computing

~v1 =
1√
3
AT~u1 =

1√
3
√

2

 1
2
1

 , ~v2 = AT~u2 =
1√
2

 −1
0
1


The matrix

Σ =

[ √
3 0

0 1

]
and the SVD is given by A = σ1~u1~v

T
1 + σ2~u2~v

T
2

A =
√

3
1√
2

[
1
1

]
1√
3
√

2

[
1 2 1

]
+

1√
2

[
−1
1

]
1√
2

[
−1 0 1

]

Problem 8: Solve the differential equation

d

dt
~x(t) = A~x(t) , ~x(0) =

[
4
1

]
, A =

[
−2 3
2 −3

]

Solution: The matrix A has the eigenvalues 0 and −5 and the corresponding eigenvectors
are [

3
2

]
,

[
1
−1

]
There is no point in normalizing the vectors since the matrix A is not symmetric. The general
solution is

~x(t) = a

[
3
2

]
+ be−5t

[
1
−1

]
and we need to choose the numbers a, b to match the initial conditions[

4
1

]
= a

[
3
2

]
+ b

[
1
−1

]
This can be easily solved and yields a = b = 1. Hence

~x(t) =

[
3
2

]
+ e−5t

[
1
−1

]
.

Problem 9: True or false:
a) Every matrix is diagonalizable. FALSE
b) If λ is an eigenvalue of the n×n matrix A and µ an eigenvalue of the n×n matrix B then
λ+ µ is an eigenvalue of the matrix A+B. FALSE
c) The eigenvectors of a symmetric matrix can be chosen to be orthogonal. TRUE
d) A three by three matrix has the eigenvalues 1, 2, 3. Is it diagonalizable. TRUE
e) A symmetric four by four matrix has the eigenvalues 1 and 2. Is it diagonalizable? YES


