SOLUTIONS OF PRACTICE TEST 2

Problem 1: Calculate the eigenvalues of the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 5 & 6 \\
0 & 0 & 3 & 4 \\
0 & 0 & 4 & 3
\end{array}\right]
$$

You do not have to calculate the eigenvectors. Is this matrix diagonalizable?

Solution: We have to compute the determinant of

$$
A-\lambda I=\left[\begin{array}{cccc}
1-\lambda & 2 & 3 & 4 \\
0 & 2-\lambda & 5 & 6 \\
0 & 0 & 3-\lambda & 4 \\
0 & 0 & 4 & 3-\lambda
\end{array}\right]
$$

Expanding according to the first column (remember the determinant of a matrix equals the determinant of its transposed) yields for the characteristic polynomial

$$
(1-\lambda)(2-\lambda) \operatorname{det}\left[\begin{array}{cc}
3-\lambda & 4 \\
4 & 3-\lambda
\end{array}\right]=(1-\lambda)(2-\lambda)\left[(3-\lambda)^{2}-16\right]
$$

The roots are easy:

$$
(3-\lambda)^{2}-16=0
$$

yields the roots $7,-1$ which together with the other 1,2 yields all the eigenvalues. The eigenvalues are all distinct and hence we have four linearly independent eigenvectors and hence the matrix is diagonalizable.

Problem 2: Show that any Hermitean 2×2 matrix can be written in a unique way as

$$
a I_{2}+b \sigma_{1}+c \sigma_{2}+d \sigma_{3}
$$

where

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are the three Pauli matrices and $a, b, c, d \in \mathbb{R}$.

Solution: The general Hermitean matrix is given by

$$
\left[\begin{array}{cc}
\alpha & \gamma-i \delta \\
\gamma+i \delta & \beta
\end{array}\right]
$$

where $\alpha, \beta, \gamma, \delta$ are real. We can write this as

$$
\left[\begin{array}{cc}
\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2} & \gamma-i \delta \\
\gamma+i \delta & \frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}
\end{array}\right]
$$

which equals

$$
\frac{\alpha+\beta}{2} I_{2}+\gamma \sigma_{1}+\delta \sigma_{2}+\frac{\alpha-\beta}{2} \sigma_{3} .
$$

We have to show that this representation is unique. This amounts to show that if

$$
a I_{2}+b \sigma_{1}+c \sigma_{2}+d \sigma_{3}=0
$$

then $a=b=c=d=0$. Clearly

$$
a I_{2}+b \sigma_{1}+c \sigma_{2}+d \sigma_{3}=\left[\begin{array}{cc}
a+d & b-i c \\
b+i c & a-d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

which implies the result. In other words the Pauli matrices together with the identity form a basis for the Hermitean matrices.

Problem 3: Let A be an $n \times n$ matrix. Compute

$$
\left.\frac{d}{d t} \operatorname{det}(I+t A)\right|_{t=0}
$$

Solution: Write

$$
\operatorname{det}(I+t A)=\sum_{\pi \in \mathcal{S}_{n}} \operatorname{det} P_{\pi}\left(\delta_{1 \pi(1)}+t A_{1 \pi(1)}\right)\left(\delta_{2 \pi(2)}+t A_{2 \pi(2)}\right) \cdots\left(\delta_{n \pi(n)}+t A_{n \pi(n)}\right)
$$

where $\delta_{i j}=0$ when $i \neq j$ and $\delta_{i i}=1$. Differentiating with respect to t using the product rule we get upon setting $t=0$

$$
\begin{gathered}
\left.\frac{d}{d t} \operatorname{det}(I+t A)\right|_{t=0}=\sum_{\pi \in \mathcal{S}_{n}} \sum_{k=1}^{n} \operatorname{det} P_{\pi} \delta_{1 \pi(1)} \delta_{2 \pi(2)} \cdots A_{k \pi(k)} \cdots \delta_{n \pi(n)} \\
=\sum_{k=1}^{n} \sum_{\pi \in \mathcal{S}_{n}} \operatorname{det} P_{\pi} \delta_{1 \pi(1)} \delta_{2 \pi(2)} \cdots A_{k \pi(k)} \cdots \delta_{n \pi(n)}
\end{gathered}
$$

The element $\delta_{i, \pi(i)}$ is not equal to zero only if $\pi(i)=i$ and hence for

$$
\delta_{1 \pi(1)} \delta_{2 \pi(2)} \cdots A_{k \pi(k)} \cdots \delta_{n \pi(n)}
$$

not to be zero requires that π is the identity permutation. Hence the sum over all permutations collapses to a single term and we get the memorable formula

$$
\left.\frac{d}{d t} \operatorname{det}(I+t A)\right|_{t=0}=\sum_{k=1}^{n} A_{k k}=\operatorname{Tr} A
$$

Problem 4: Solve the three term recursion, i.e., find a_{n},

$$
a_{n+1}=a_{n}+2 a_{n-1}, n=0,1,2, \ldots
$$

with the initial conditions $a_{0}=a_{1}=1$.

Solution: We write

$$
\vec{X}_{n}=\left[\begin{array}{c}
a_{n} \\
a_{n-1}
\end{array}\right]
$$

and get

$$
\vec{X}_{n+1}=A \vec{X}_{n}, \vec{X}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right]
$$

Hence

$$
\vec{X}_{n}=A^{n-1} \vec{X}_{1} .
$$

The eigenvalues are 2, -1 and the corresponding eigenvectors

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Set

$$
V=\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right]
$$

so that

$$
A V=V D \text { or } A=V D V^{-1}
$$

where

$$
D=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] .
$$

Hence

$$
\begin{gathered}
A^{n-1}=V D^{n-1} V^{-1}=\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
2^{n-1} & 0 \\
0 & (-1)^{n-1}
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right] \\
=\frac{1}{3}\left[\begin{array}{cc}
2^{n}+(-1)^{n-1} & 2^{n}+2(-1)^{n} \\
2^{n-1}+(-1)^{n} & 2^{n-1}+2(-1)^{n-1}
\end{array}\right]
\end{gathered}
$$

and

$$
A^{n-1} \vec{X}_{1}=\frac{1}{3}\left[\begin{array}{l}
2^{n+1}+(-1)^{n} \\
2^{n}+(-1)^{n-1}
\end{array}\right]
$$

and $a_{n}=2^{n+1}+(-1)^{n}$.

Problem 5: Diagonalize the matrix

$$
A=\left[\begin{array}{cc}
2 & 4-3 i \\
4+3 i & 2
\end{array}\right]
$$

by finding a unitary 2×2 matrix such that $A=U D U^{*}$ where D is diagonal.

Solution: The matrix is Hermitean. Its characteristic polynomial is given by

$$
\lambda^{2}-4 \lambda+(4-(4-3 i)(4+3 i))=\lambda^{2}-4 \lambda-21=(\lambda-2)^{2}-25=0
$$

so that the roots are given by

$$
7,-3 .
$$

For the eigenvectors we solve $(A-\lambda I) \vec{v}=0$. For the eigenvalue 7 we get the equation

$$
-5 a+(4-3 i) b=0,(4+3 i) a-5 b=0
$$

These two equations are equivalent (check!) and hence it suffices to consider the first on. If we set $a=(4-3 i)$ and $b=5$ we have a solution

$$
\left[\begin{array}{c}
(4-3 i) \\
5
\end{array}\right]
$$

Normalizing it yields the complex vector

$$
\vec{w}_{1}=\frac{1}{5 \sqrt{5}}\left[\begin{array}{c}
(4-3 i) \\
5
\end{array}\right]
$$

for the other eigenvalue -3 we have to solve the equation

$$
5 a+(4-3 i) b=0
$$

which yields

$$
\vec{w}_{2}=\frac{1}{5 \sqrt{5}}\left[\begin{array}{c}
(4-3 i) \\
-5
\end{array}\right]
$$

The inner product $\left\langle\vec{w}_{1}, \vec{w}_{2}\right\rangle=0$ (check!) The matrix

$$
U=\frac{1}{5 \sqrt{5}}\left[\begin{array}{cc}
(4-3 i) & (4-3 i) \\
5 & -5
\end{array}\right]
$$

is unitary, i.e., $U U^{*}=U^{*} U=I$ (check!) and we have that

$$
A U=U\left[\begin{array}{cc}
7 & 0 \\
0 & -3
\end{array}\right]
$$

or

$$
A=U\left[\begin{array}{cc}
7 & 0 \\
0 & -3
\end{array}\right] U^{*}
$$

Problem 6: Diagonalize the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

using orthogonal matrices, i.e., find D diagonal and R orthogonal so that $A=R D R^{T}$. (Hint: Guess one eigenvector.)

Solution: The matrix is symmetric. The normalized eigenvector in question is

$$
\vec{v}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and the corresponding eigenvalue is 6 . Next we compute the characteristic polynomial

$$
\operatorname{det}\left[\begin{array}{ccc}
1-\lambda & 2 & 3 \\
2 & 3-\lambda & 1 \\
3 & 1 & 2-\lambda
\end{array}\right]
$$

$$
\begin{gathered}
=(1-\lambda)[(3-\lambda)(2-\lambda)-1]-2[2(2-\lambda)-3]+3[2-3(3-\lambda)] \\
=(1-\lambda)\left[5-5 \lambda+\lambda^{2}\right]-2[1-2 \lambda]+3[-7+3 \lambda] \\
=5-5 \lambda+\lambda^{2}-5 \lambda+5 \lambda^{2}-\lambda^{3}-2+4 \lambda-21+9 \lambda \\
=-\lambda^{3}+6 \lambda^{2}+3 \lambda-18
\end{gathered}
$$

Dividing by $(\lambda-6)$ yields

$$
\left[-\lambda^{3}+6 \lambda^{2}+3 \lambda-18\right]:(\lambda-6)=-\lambda^{2}+3
$$

and the eigenvalues are $6, \sqrt{3}$ and $-\sqrt{3}$. To compute the eigenvector for $\sqrt{3}$ we row reduce

$$
\left[\begin{array}{ccc}
1-\sqrt{3} & 2 & 3 \\
2 & 3-\sqrt{3} & 1 \\
3 & 1 & 2-\sqrt{3}
\end{array}\right]
$$

to

$$
\left[\begin{array}{ccc}
-2 & 2(1+\sqrt{3}) & 3(1+\sqrt{3}) \\
0 & 2 & 1+\sqrt{3} \\
0 & 0 & 0
\end{array}\right]
$$

which yields the normalized eigenvector

$$
\frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
\sqrt{3}-1 \\
-\sqrt{3}-1 \\
2
\end{array}\right]
$$

Repeating the computation for the eigenvalue $-\sqrt{3}$ yields

$$
\frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
-\sqrt{3}-1 \\
\sqrt{3}-1 \\
2
\end{array}\right]
$$

Hence we have that

$$
A=\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right]\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & \sqrt{3} & 0 \\
0 & 0 & -\sqrt{3}
\end{array}\right]\left[\begin{array}{c}
\vec{v}_{1}^{T} \\
\vec{v}_{2}^{T} \\
\vec{v}_{3}^{T}
\end{array}\right]
$$

Problem 7: Compute the singular value decomposition for the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Solution: The matrix has rank 2. There are two possible ways to start. Either we diagonalize $A^{T} A$ or $A A^{T}$, both yield the singular values. The second possibility is easier since the matrix is 2×2 and not 3×3.

$$
A A^{T}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

The normalized eigenvectors are

$$
\vec{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \vec{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

These vectors \vec{u}_{1}, \vec{u}_{2} are an orthonormal basis for the column space of A. Next we find and orthonormal basis for the column space for A^{T} by computing

$$
\vec{v}_{1}=\frac{1}{\sqrt{3}} A^{T} \vec{u}_{1}=\frac{1}{\sqrt{3} \sqrt{2}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \vec{v}_{2}=A^{T} \vec{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

The matrix

$$
\Sigma=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right]
$$

and the SVD is given by $A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T}$

$$
A=\sqrt{3} \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \frac{1}{\sqrt{3} \sqrt{2}}\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{lll}
-1 & 0 & 1
\end{array}\right]
$$

Problem 8: Solve the differential equation

$$
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t), \vec{x}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right], A=\left[\begin{array}{cc}
-2 & 3 \\
2 & -3
\end{array}\right]
$$

Solution: The matrix A has the eigenvalues 0 and -5 and the corresponding eigenvectors are

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

There is no point in normalizing the vectors since the matrix A is not symmetric. The general solution is

$$
\vec{x}(t)=a\left[\begin{array}{l}
3 \\
2
\end{array}\right]+b e^{-5 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and we need to choose the numbers a, b to match the initial conditions

$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=a\left[\begin{array}{l}
3 \\
2
\end{array}\right]+b\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

This can be easily solved and yields $a=b=1$. Hence

$$
\vec{x}(t)=\left[\begin{array}{l}
3 \\
2
\end{array}\right]+e^{-5 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Problem 9: True or false:
a) Every matrix is diagonalizable. FALSE
b) If λ is an eigenvalue of the $n \times n$ matrix A and μ an eigenvalue of the $n \times n$ matrix B then $\lambda+\mu$ is an eigenvalue of the matrix $A+B$. FALSE
c) The eigenvectors of a symmetric matrix can be chosen to be orthogonal. TRUE
d) A three by three matrix has the eigenvalues $1,2,3$. Is it diagonalizable. TRUE
e) A symmetric four by four matrix has the eigenvalues 1 and 2 . Is it diagonalizable? YES

