Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form.

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
2 & 4 & 5 & 4 \\
0 & 0 & 3 & 6
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 2 & 4 & 5 \\
0 & 0 & -3 & -6 \\
0 & 0 & 3 & 6
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 2 & 4 & 5 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

b) (3 points) Circle the pivots in the final matrix. the ones in the first and third column.
c) (3 points) Write down the pivot columns of the original matrix.

$$
\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
5 \\
3
\end{array}\right]
$$

d) (2 points) Indicate the free variables. Second and fourth.

Problem 2:

a) (10 points) Using one step in the row reduction algorithm, find the $L U$ factorization of the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 7 & 1
\end{array}\right]
$$

Multiply A by

$$
\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

so that

$$
\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 7 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

so that

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

b) (10 points) A matrix A has an $L U$ factorization

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -5 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & -7 & -2 \\
0 & -2 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

Solve the system $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
-7 \\
5 \\
2
\end{array}\right]
$$

Solve $L \vec{y}=\vec{b}$ using forward substitution. $x=-7, y=5+x=-2, z=2+5 y-2 x=$ $2-10+14=6$, so

$$
\vec{y}=\left[\begin{array}{c}
-7 \\
-2 \\
6
\end{array}\right]
$$

Now solve $U \vec{x}=\vec{y}$ using back substitution. $z=-6,-2 y=-2+z$ or $y=4,3 x=$ $-7+7 y+2 z=9$ or $x=3$

Problem 3: Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
2 & 0 & 2 \\
-1 & 1 & -4
\end{array}\right]
$$

Row reduction:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right] .} \\
& {\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

a) (4 points) Find a basis for $C(A)$.

$$
\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

b) (3 points) Find a basis for $N(A)$ Free variable is z so $x=-z, y=3 z$ and hence

$$
\left[\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right]
$$

is a basis for the null space.
c) (3 points) Find a basis for $C\left(A^{T}\right)$ Choose two vectors perpendicular to the vector in the null space:

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

d) (5 points) Find a basis for $N\left(A^{T}\right)$. Must be perp to the two basis vectors in $C(A)$.

$$
\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]
$$

Problem 4: a) (10 points) Use the normal equations to find the vector $\vec{x} \in \mathbb{R}^{2}$ such that $A \vec{x}$ is closest to \vec{b}, where

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & 1 \\
2 & -2 \\
-1 & 1
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] . \\
A^{T} A=\left[\begin{array}{cc}
6 & -4 \\
-4 & 6
\end{array}\right], A^{T} \vec{b}=\left[\begin{array}{c}
6 \\
-2
\end{array}\right] \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
\frac{3}{5}
\end{array}\right]}
\end{gathered}
$$

b) (5 points) Find the projection of \vec{b} onto the column space of A.

$$
A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{2}{5}\left[\begin{array}{c}
5 \\
4 \\
-2
\end{array}\right]
$$

Problem 5: a) (10 points) Find the matrix for the orthogonal projection onto the space S spanned by the two orthonormal vectors

$$
\begin{gathered}
\vec{v}_{1}=\frac{1}{3}\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \text { and } \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right] \\
Q=\frac{1}{3}\left[\begin{array}{cc}
-2 & -1 \\
1 & 2 \\
2 & -2
\end{array}\right], Q^{T}=\frac{1}{3}\left[\begin{array}{ccc}
-2 & 1 & 2 \\
-1 & 2 & -2
\end{array}\right] \\
Q Q^{T}=\frac{1}{9}\left[\begin{array}{ccc}
5 & -4 & -2 \\
-4 & 5 & -2 \\
-2 & -2 & 8
\end{array}\right]
\end{gathered}
$$

b) (5 points) Find the matrix for the orthogonal projection onto S^{\perp}.

$$
I-Q Q^{T}=\frac{1}{9}\left[\begin{array}{lll}
4 & 4 & 2 \\
4 & 4 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

c) (5 points) Find the least square approximations for $A \vec{x}=\vec{b}$, i.e., find all vectors $\vec{x} \in \mathbb{R}^{3}$ so that $A \vec{x}$ is closest to \vec{b} where $\vec{b}=\left[\begin{array}{c}4 \\ 1 \\ -1\end{array}\right]$ and A is given by its QR factorization, i.e.,

$$
A=\frac{1}{3}\left[\begin{array}{cc}
-2 & -1 \\
1 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

Solve $R \vec{x}=Q^{T} \vec{b}$

$$
Q^{T} \vec{b}=\left[\begin{array}{c}
-3 \\
0
\end{array}\right]
$$

$-y+z=0$, or $z=y, 3 x+y-z=-3$ or $x=-1$. So the solutions are

$$
\left[\begin{array}{c}
-1 \\
z \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Problem 6: (10 points) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\vec{u}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

the solution is

$$
\vec{q}_{1}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \vec{q}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Problem 7: True or False: (3 points each)
a) A matrix that has a zero null space always has a right inverse FALSE
b) If $A=Q R, Q$ orthogonal and R upper triangular then the column vectors of Q form an orthonormal basis for $C(A)$. TRUE
c) If the column vectors of A are linearly independent then the matrix $A^{T} A$ is invertible. TRUE
d) The rank of a matrix A is the same as the rank of the matrix A^{T}. TRUE
e) For any two matrices A, B, if $A B$ is invertible then both A and B are invertible. FALSE

