HOMEWORK 1

Problem 1: Given the $n \times 4$ matrix $A=\left[\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right]$, write the matrix

$$
\left[\vec{v}_{1}, \vec{v}_{1}+2 \vec{v}_{2}, 3 \vec{v}_{2}+\vec{v}_{3}+\vec{v}_{4}, \vec{v}_{2}+\vec{v}_{4}\right]
$$

as a product of some matrix B with the matrix A. (Pay attention to the order of the product!)

Problem 2: Find a 3×3 matrix E so that the product of E with the matrix

$$
\left[\begin{array}{c}
\vec{r}_{1}^{T} \\
\vec{r}_{2}^{T} \\
\vec{r}_{3}^{T}
\end{array}\right]
$$

yields the matrix

$$
\left[\begin{array}{c}
\vec{r}_{1}^{T}+2 \vec{r}_{2}^{T} \\
\vec{r}_{1}^{T}+\vec{r}_{2}^{T}+\vec{r}_{3}^{T} \\
\vec{r}_{2}^{T}+\vec{r}_{3}^{T}
\end{array}\right]
$$

(Again, pay attention to the order of the product!)

Problem 3: find all the solutions of the complex system

$$
(2+i) z+(3-i) w=1,(3+i) z-2(2-i) w=2 .
$$

Please also work problems 35, 40, 41, 50 and 51 in Section 1.4 in 'Linear Algebra and its Applications'.

Please turn it in for grading on Thursday January 16 .

