HOMEWORK 3

Problem 1: Let A be an $m \times n$ matrix whose rank is 1 . Prove that there exists a vector $\vec{v} \in \mathbb{R}^{m}$ and a vector $\vec{u} \in \mathbb{R}^{n}$ such that $A=\vec{v} \vec{u}^{T}$.

Problem 2: Given an $m \times n$ matrix A whose null space $N(A)=\{\overrightarrow{0}\}$. Show that $m \geq n$.

Problem 3: Let A be an $n \times n$ matrix. Prove that the column vectors of this matrix are a basis for \mathbb{R}^{n} if an only if the matrix A is invertible.

Please do problems 10, 16, 17, 18, 28 in Section 2.4 of Strang.

Please turn it in for grading on Thursday January 30.

