HOMEWORK 7

Problem 1: Suppose that V, W are two vector spaces and $T: V \rightarrow W$ is a linear transformation. The transformation T is called injective if $T\left(\vec{v}_{1}\right)=T\left(\vec{v}_{2}\right)$ implies that $\vec{v}_{1}=\vec{v}_{2}$. The transformation T is called surjective if for any $\vec{w} \in W$ there exists $\vec{v} \in V$ such that $T(\vec{v})=\vec{w}$.
a) Show that T is injective if and only if $\operatorname{Ker}(T)=\{\overrightarrow{0}\}$. Recall that $\operatorname{Ker}(T)$, the kernel of T consists of all vectors $\vec{v} \in V$ such that $T(\vec{v})=0$.
b) Show that T is surjective if and only if the range of $T, \operatorname{Ran}(T)=W$. Recall that $\operatorname{Ran}(T)$ is the set of all vetors in $\vec{w} \in W$ that are of the form $\vec{w}=T(\vec{v})$ for some $\vec{v} \in V$.
c) Show that if T is injective and surjective then it has an inverse $T^{-1}: W \rightarrow V$.
d) Show that this inverse T^{-1} is linear.

Please work problems 12, 34 and 35 in Section 4.2 of Strang. Work also problems 5 and 11 in Section 4.3 of Strang.

Please turn it in for grading on Thursday March 5 .

