Print Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$ State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

Problem 1 (15): Compute the eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{ll}
-1 & 4 \\
-1 & 3
\end{array}\right]
$$

Is it diagonalizable? Write the possible eigenvectors as row vectors. No partial credit will be given because you can check the answer.

Solution: Characteristic polynomial: $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$ Alg. mult. is 2. Eigenvector is $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ geom. mult. is 1

Problem 2 (10): For which values of a is the matrix

$$
\left[\begin{array}{cc}
a & 1-a \\
a-1 & 2-a
\end{array}\right]
$$

diagonalizable? Circle the correct option: 2 , none, 1 and $-1,1$ only, all

Solution: Characteristic polynomial is $\lambda^{2}-2 \lambda+a(2-a)-(a-1)(1-a)=\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$ alg mult is 2 Eigenvector equation is $a x+(1-a) y=x$ so that $x=y$ if $a \neq 1$. So, $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is the only eigenvector in this case and hence the geom. multiplicity is 1 . If $a=1$ the the matrix is the identity matrix and the geom. mult is 2 and hence diagonal.

Problem 3 (10): The vectors $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ span the unit cube which has volume 1 . The linear $\operatorname{map} T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $T \vec{x}=A \vec{x}$ where

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

maps the unit cube to a parallelepiped. Which one of the following numbers is the volume of the parallelepiped: $4,-3,3,2$?

Solution: The parallelepiped is given by the three column vectors of A. Hence the volume is $|\operatorname{det} A|=3$

Problem 4 (20): Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that maps the vector \vec{e}_{1} to the vector $\vec{e}_{1}+2 \vec{e}_{2}$ and the vector \vec{e}_{2} to $2 \vec{e}_{1}-\vec{e}_{2}$.
a) Write the matrix associated with this transformation.
b) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection about the $x=y$ axis.

Write the matrix for the map $T \circ S$ as well as the matrix associated with the map $S \circ T$.

Solution: Matrix for T :

$$
\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]
$$

Matrix for $S \circ T$ is

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]
$$

Matrix for $T \circ S$ is

$$
\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right]
$$

Problem 5 (12): Find the eigenvalues of the matrix

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 5 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

You do not have to compute the eigenvectors. There is no partial credit, because you can check your answer.

Solution: $-1,3,2,5$

Problem 6 (15): Construct a matrix A with eigenvalues 1 and 2, such that the eigenvalue 1 has algebraic multiplicity 3 , geometric multiplicity 1 , and 2 has algebraic multiplicity 2 , geometric 1.

Solution:

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Problem 7 (18): Suppose S is a k-dimensional subspace of $\mathbb{R}^{5}, k \leq 5$. Let P be the matrix of the orthogonal projection to S.
a) (5) What are the eigenvalues and eigenvectors of P ?
b) (5) What are the algebraic and geometric multiplicities of the eigenvalues of P ?
c)(5) Is P diagonalisable?

Solution: All the vectors in S are eigenvectors with eigenvalue 1 and those perpedicular to S are the eigenvectors with eigenvalue 0 . The algebraic multiplicity of $1=$ geoemetric multiplicity of 1 equals k. The alg mult of 0 is the geom. mult. of 0 equals $5-k$. It is diagonalizable.

Problem EC* (10): Consider the non-zero rank one matrix $\vec{v} \vec{u}^{T}, \vec{v}, \vec{u} \in \mathbb{R}^{3}$ and assume that $\vec{u} \cdot \vec{v} \neq 0$. What are the eigenvectors and eigenvalues? Is it diagonalizable? Suppose that $\vec{u} \cdot \vec{v}=0$ is it again diagonalizable?

Solution: Assume that $\vec{u} \cdot \vec{v} \neq 0: \vec{v}$ is an eigenvector, since $\vec{v} \vec{u}^{T} \vec{v}=(\vec{u} \cdot \vec{v}) \vec{v}$. Hence the eigenvalue is $\vec{u} \cdot \vec{v}$. Any vector perpendicular to \vec{u} gets mapped to the zero vector. Hence the matrix is diagonalizable.

Suppose now that $\vec{u} \cdot \vec{v}=0$: Any vector perpendicular to \vec{u} is an eigenvector with eigenvalue 0 . Any vector that is not perpendicular to \vec{u} cannot be an eigenvector since the matrix maps this vector on to \vec{v} which is perpendicular. Hence this matrix is not diagonalizable.

