PRACTICE TEST 1

Problem 1: a) By computing the row reduced echelon form find all the solutions of the system $A \vec{x}=\vec{b}$ where

$$
A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & 1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
-1 \\
-4
\end{array}\right]
$$

b) Indicate the pivot columns.
c) What is the rank of A ?

Problem 2: a) Find a 3×3 matrix E that when multiplied with a 3×3 matrix A adds three times the first column of A to the second column of A. (Hint: Think of $A E$ and not EA.)
b) What is the inverse of E ?

Problem 3: a) Are the three vectors below linear independent?

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

b) An $n \times n$ matrix is invertible if and only if the column vectors form a basis for \mathbb{R}^{n}. Explain this.

Problem 4: Find the inverse of the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Problem 5: a) Find a 2×2 matrix whose column space and null space are equal.
b) Is the same true for a symmetric 2×2 matrix? Explain.

Problem 6: Find a basis for $N(A), C(A), N\left(A^{T}\right)$ and $C\left(A^{T}\right)$ where

$$
A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
2 & 6 & 6 \\
2 & 3 & 0
\end{array}\right]
$$

Problem 7: Using the normal equations, solve the least square problem for $A \vec{x}=\vec{b}$ where

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 1 \\
2 & -1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

Problem 8: a) Find the $Q R$ factorization of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
2 & 6 & 6 \\
2 & 3 & 0
\end{array}\right]
$$

b) Using the result of a) find the least square solutions for the equation $A \vec{x}$ where $\vec{b}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.

Problem 9: Explain why it is true or provide a counter example.
a) The column space does not change under row reduction.
b) A matrix has full column rank if and only if it has a trivial null space.
c) For any matrix $A, N\left(A^{T} A\right)$ and $C\left(A^{T} A\right)$ are perpendicular.
d) If A is an $m \times n$ matrix, then $C\left(A^{T} A\right)=C\left(A^{T}\right)$.
e) Three vectors of which any two vectors are linearly independent are linearly independent.

