PRACTICE TEST 2

Problem 1: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that maps the vector \vec{e}_{1} to the vector $\vec{e}_{1}+\vec{e}_{2}$ and the vector \vec{e}_{2} to $\vec{e}_{1}-\vec{e}_{2}$.
a) Write the matrix associated with this transformation.
b) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection about the $x=y$ axis.

Write the matrix for the map $T \circ S$ as wll as the matrix associated with the map $S \circ T$. Sketch a rough image of what these transformations are doing to the standard basis vectors.

Problem 2: The eigenvalues of the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 5 & 6 \\
0 & 0 & 3 & 4 \\
0 & 0 & 4 & 3
\end{array}\right]
$$

are:
(1) $1,2,7$
(2) $-1,1,2,5$
(3) $1,2,3$
(4) $-1,1,2,7$
(5) $1,2,3,-4$

You do not have to calculate the eigenvectors. Is this matrix diagonalizable?

Problem 3: Consider the parallelepiped formed by the three vectors

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

a) write its volume.
b) Suppose that the parallelepiped is sheared in the direction $\vec{d}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, i.e., the vectors \vec{u}_{1} and \vec{u}_{2} remain the same but the vector \vec{u}_{3} is changed to $\vec{u}_{3}+\vec{d}$. How does the volume change?

Extra credit: Can you use a different description of volume (not determinants) to justify that the volume should not change by shearing?

Problem $4^{* *}$ Extra credit: A matrix M is Hermitian if $M=M^{*}$, i.e., it is equal to its own conjugate transpose. Show that any Hermitian 2×2 matrix can be written in a unique
way as

$$
a I_{2}+b \sigma_{1}+c \sigma_{2}+d \sigma_{3}
$$

where

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are the three Pauli matrices and $a, b, c, d \in \mathbb{R}$.

Problem 5: Give an example of a matrix that has the eigenvalues 0 and 1; both eigenvalues have algebraic multiplicity 2 ; the eigenvalue 0 has the geometric multiplicity 1 and the eigenvalue 1 has the geometric multiplicity 2 .

Problem 6: i) Write the permutation below as a sequence of swaps. What is the sign of the permutation?

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
3 & 1 & 4 & 2 & 5
\end{array}\right)
$$

ii) Compute the determinant of the matrix

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Problem 7: The numbers 6 and $\sqrt{3}$ are eigenvalues for the matrix below. What is its third eigenvalue?

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right]
$$

Problem 8: True or false: (5 points each; if you say something is False, 2 points are reserved for providing a counterexample.)
a) If a 3×3 matrix has the eigenvalue 2 with geometric multiplicity 3 then the matrix is $2 I_{3}$.
b) A three by three matrix has the eigenvalues $1,2,3$. Is it diagonalizable.
c) Consider the two matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Can they be simultaneously diagonalized, i.e., do they have all their eigenvectors in common?
d) A two by two matrix has determinant 4 and trace 4 . Is it necessarily diagonalizable?
e) The algebraic multiplicity may be smaller than the geometric multiplicity.
f) If a 3×3 matrix has the eigenvalue 2 with algebraic multiplicity 3 then the matrix is $2 I_{3}$.

