TEST 1, MATH 3406 A, SEPTEMBER 26, 2019

Print Name:

Section Number:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form.

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
3 & 1 & -1 & -3
\end{array}\right]
$$

b) (3 points) Circle the pivots in the final matrix.
c) (3 points) Write down the pivot columns of the original matrix.
d) (2 points) Indicate the free variables.

Problem 2:

a) (5 points) Using one step in the row reduction algorithm, find the $L U$ factorization of the matrix

$$
A=\left[\begin{array}{lll}
1 & 4 & 6 \\
2 & 6 & 8
\end{array}\right]
$$

b) (10 points) A matrix A has an $L U$ factorization

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -5 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Solve the system $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]
$$

Problem 3: Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & -2 \\
2 & 0 & 2 \\
8 & 2 & 2
\end{array}\right]
$$

a) (4 points) Find a basis for $C(A)$.
b) (3 points) Find a basis for $N(A)$
c) (3 points) Find a basis for $C\left(A^{T}\right)$
d) (5 points) Find a basis for $N\left(A^{T}\right)$

Problem 4: a) (10 points) Use the normal equations to find the vector $\vec{x} \in \mathbb{R}^{2}$ such that $A \vec{x}$ is closest to \vec{b}, where

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
-1 & 2
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]
$$

b) (5 points) Find the projection of \vec{b} onto the column space of A.

Problem 5: a) (10 points) Find the matrix for the orthogonal projection onto the space S spanned by the two orthonormal vectors

$$
\vec{v}_{1}=\frac{1}{3}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \text { and } \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right]
$$

b) (5 points) Find the matrix for the orthogonal projection onto S^{\perp}.
c) (5 points) Find the least square approximations for $A \vec{x}=\vec{b}$, i.e., find all vectors $\vec{x} \in \mathbb{R}^{3}$ so that $A \vec{x}$ is closest to \vec{b} where $\vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and A is given by its QR factorization, i.e.,

$$
A=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
2 & 2 \\
1 & -2
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & 1 & 1
\end{array}\right] .
$$

Problem 6: (10 points) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\vec{u}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Problem 7: True or False: (3 points each, no partial credit)
a) If the row vectors of A are linearly independent then matrix $A A^{T}$ is invertible.
b) If $A=Q R, Q$ orthogonal and R upper triangular then the column vectors of Q form an orthonormal basis for $C(A)$.
c) A matrix that has full column rank, i.e., every column has a pivot, always has a right inverse.
d) The rank of a matrix A^{T} is the same as the rank of the matrix A.
e) For any two matrices A, B, if neither A nor B is invertible, then $A B$ is not invertible either.

