
TEST 1, MATH 3406 A, SEPTEMBER 26, 2019

Print Name:

Section Number:

This test is to be taken without calculators and notes of any sort. The allowed
time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you
mean

√
2 do not write 1.414 . . . . State your work clearly, otherwise credit cannot be given.

Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

1
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Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form. 1 2 3 4
4 3 2 1
3 1 −1 −3



b) (3 points) Circle the pivots in the final matrix.

c) (3 points) Write down the pivot columns of the original matrix.

d) (2 points) Indicate the free variables.
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Problem 2:

a) (5 points) Using one step in the row reduction algorithm, find the LU factorization of the
matrix

A =

[
1 4 6
2 6 8

]

b) (10 points) A matrix A has an LU factorization

A =

 1 0 0
−1 1 0
2 −5 1

 2 1 −2
0 2 1
0 0 1


Solve the system A~x = ~b where

~b =

 1
0
−2





4 TEST 1, MATH 3406 A, SEPTEMBER 26, 2019

Problem 3: Consider the matrix

A =

 1 1 −2
2 0 2
8 2 2

 .

a) (4 points) Find a basis for C(A).

b) (3 points) Find a basis for N(A)

c) (3 points) Find a basis for C(AT )

d) (5 points) Find a basis for N(AT )
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Problem 4: a) (10 points) Use the normal equations to find the vector ~x ∈ R2 such that A~x

is closest to ~b, where

A =

 1 1
1 1
−1 2

 and ~b =

 2
1
−2

 .

b) (5 points) Find the projection of ~b onto the column space of A.
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Problem 5: a) (10 points) Find the matrix for the orthogonal projection onto the space S
spanned by the two orthonormal vectors

~v1 =
1

3

 2
2
1

 and ~v2 =
1

3

 −1
2
−2



b) (5 points) Find the matrix for the orthogonal projection onto S⊥.

c) (5 points) Find the least square approximations for A~x = ~b, i.e., find all vectors ~x ∈ R3 so

that A~x is closest to ~b where ~b =

 1
1
2

 and A is given by its QR factorization, i.e.,

A =
1

3

 2 −1
2 2
1 −2

[ 3 1 −1
0 1 1

]
.



TEST 1, MATH 3406 A, SEPTEMBER 26, 2019 7

Problem 6: (10 points) Find an orthonormal basis for the subspace of R4 spanned by the
vectors

~u1 =


1
−1
1
1

 , ~u2 =


1
1
1
−1

 , ~u3 =


1
−1
1
−1



Problem 7: True or False: (3 points each, no partial credit)

a) If the row vectors of A are linearly independent then the matrix AAT is invertible.

b) If A = QR, Q orthogonal and R upper triangular then the column vectors of Q form an
orthonormal basis for C(A).

c) A matrix that has full column rank, i.e., every column has a pivot, always has a right
inverse.

d) The rank of a matrix AT is the same as the rank of the matrix A.

e) For any two matrices A,B, if neither A nor B is invertible, then AB is not invertible either.


