TEST 1, MATH 3406 A, SEPTEMBER 26, 2019

Print Name:

Section Number:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
3 & 1 & -1 & -3
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -5 & -10 & -15 \\
0 & -5 & -10 & -15
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

b) (3 points) Circle the pivots in the final matrix.
c) (3 points) Write down the pivot columns of the original matrix.

$$
\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]
$$

d) (2 points) Indicate the free variables. Third and fourth column.

Problem 2:

a) (5 points) Using one step in the row reduction algorithm, find the $L U$ factorization of the matrix

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 4 & 6 \\
2 & 6 & 8
\end{array}\right] \\
{\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 4 & 6 \\
2 & 6 & 8
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & 6 \\
0 & -2 & -4
\end{array}\right]}
\end{gathered}
$$

and

$$
\left[\begin{array}{lll}
1 & 4 & 6 \\
2 & 6 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & 6 \\
0 & -2 & -4
\end{array}\right]
$$

b) (10 points) A matrix A has an $L U$ factorization

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & -5 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -2 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Solve the system $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]
$$

$L \vec{y}=\vec{b}$

$$
\vec{y}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$U \vec{x}=\vec{y}$

$$
\vec{x}=\left[\begin{array}{c}
3 / 2 \\
0 \\
1
\end{array}\right]
$$

Problem 3: Consider the matrix

$$
\begin{aligned}
A= & {\left[\begin{array}{lll}
1 & 1 & -2 \\
2 & 0 & 2 \\
8 & 2 & 2
\end{array}\right] . } \\
& {\left[\begin{array}{ccc}
1 & 1 & -2 \\
0 & 1 & -3 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

a) (4 points) Find a basis for $C(A)$.

$$
\left[\begin{array}{l}
1 \\
2 \\
8
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

b) (3 points) Find a basis for $N(A)$

$$
\left[\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right]
$$

c) (3 points) Find a basis for $C\left(A^{T}\right)$

$$
\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]
$$

d) (5 points) Find a basis for $N\left(A^{T}\right)$

$$
\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]
$$

Problem 4: a) (10 points) Use the normal equations to find the vector $\vec{x} \in \mathbb{R}^{2}$ such that $A \vec{x}$ is closest to \vec{b}, where

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
-1 & 2
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] . \\
\vec{x}^{*}=\left[\begin{array}{c}
5 / 3 \\
-1 / 6
\end{array}\right]
\end{gathered}
$$

b) (5 points) Find the projection of \vec{b} onto the column space of A.

$$
\vec{b}^{*}=\frac{1}{2}\left[\begin{array}{c}
3 \\
3 \\
-4
\end{array}\right]
$$

Problem 5: a) (10 points) Find the matrix for the orthogonal projection onto the space S spanned by the two orthonormal vectors

$$
\begin{gathered}
\vec{v}_{1}=\frac{1}{3}\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \text { and } \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
-1 \\
2 \\
-2
\end{array}\right] \\
Q Q^{T}=\frac{1}{9}\left[\begin{array}{ccc}
5 & 2 & 4 \\
2 & 8 & -2 \\
4 & -2 & 5
\end{array}\right]
\end{gathered}
$$

b) (5 points) Find the matrix for the orthogonal projection onto S^{\perp}.

$$
I-Q Q^{T}=\frac{1}{9}\left[\begin{array}{ccc}
4 & -2 & -4 \\
-2 & 1 & 2 \\
-4 & 2 & 4
\end{array}\right]
$$

c) (5 points) Find the least square approximations for $A \vec{x}=\vec{b}$, i.e., find all vectors $\vec{x} \in \mathbb{R}^{3}$ so that $A \vec{x}$ is closest to \vec{b} where $\vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and A is given by its QR factorization, i.e.,

$$
\begin{gathered}
A=\frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
2 & 2 \\
1 & -2
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & 1 & 1
\end{array}\right] . \\
Q^{T} \vec{b}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{gathered}
$$

$R \vec{x}=Q^{T} \vec{b}$

$$
\vec{x}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
2 / 3 \\
-1 \\
1
\end{array}\right]
$$

Problem 6: (10 points) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\begin{gathered}
\vec{u}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \\
\vec{v}_{1}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \vec{v}_{2}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right] \\
\vec{q}_{3}=\vec{u}_{3}-\vec{v}_{1} \cdot \vec{u}_{3} \vec{v}_{1}-\vec{v}_{2} \cdot \vec{u}_{3} \vec{v}_{2}=\vec{u}_{3}-\vec{v}_{1}-\vec{v}_{2} \\
\vec{v}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Problem 7: True or False: (3 points each, no partial credit)
a) If the row vectors of A are linearly independent then the matrix $A A^{T}$ is invertible. TRUE The reason is that A^{T} is a matrix whose column vectors are linearly independent and hence $\left(A^{T}\right)^{T} A^{T}=A A^{T}$ is invertible.
b) If $A=Q R, Q$ orthogonal and R upper triangular then the column vectors of Q form an orthonormal basis for $C(A)$. TRUE
c) A matrix that has full column rank, i.e., every column has a pivot, always has a right inverse. FALSE

Again, take the matrix

$$
A=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

A right inverse B must be of the form

$$
B=\left[\begin{array}{ll}
a & b
\end{array}\right]
$$

hence

$$
A B=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]
$$

which cannot be the two by two identity no matter what a, b.
d) The rank of a matrix A^{T} is the same as the rank of the matrix A. TRUE
e) For any two matrices A, B, if neither A nor B is invertible, then $A B$ is not invertible either. FALSE

Take

$$
B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], A=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

so that $A B=1$ which is certainly invertible.

