Print Name:

This test is to be taken without calculators and notes of any sort. The allowed time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you mean $\sqrt{2}$ do not write $1.414 \ldots$. State your work clearly, otherwise credit cannot be given. Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form.

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 3 \\
3 & 7 & 10 & 5 \\
2 & 5 & 7 & 2
\end{array}\right] \\
{\left[\begin{array}{cccc}
1 & 2 & 3 & 3 \\
0 & 1 & 1 & -4 \\
0 & 1 & 1 & -4
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 2 & 3 & 3 \\
0 & 1 & 1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 0 & 1 & 11 \\
0 & 1 & 1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

b) (3 points) Circle the pivots in the matrix you obtain in the final step of row reduction above.
c) (3 points) Write down a basis for the column space of A.

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
7 \\
5
\end{array}\right]
$$

d) (5 points) Find a basis for $\operatorname{Nul}(A)$.

$$
\left[\begin{array}{c}
-y-11 z \\
-y+4 z \\
y \\
z
\end{array}\right]=y\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
-11 \\
4 \\
0 \\
1
\end{array}\right]
$$

e) (2 points) What is the dimension of $\operatorname{Nul}\left(A^{T}\right)$?

$$
\text { The rank of the matrix is } 2 \text {, the row space has three rows and hence the dimension is } 1 \text {. }
$$

Problem 2:

a) (10 points) A matrix A has an $L U$ factorization

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 4 & -8 \\
0 & -2 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Solve the system $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
2 \\
-4 \\
6
\end{array}\right]
$$

First solve

$$
\begin{gathered}
L \vec{y}=\vec{b}, \vec{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right]} \\
U \vec{x}=\vec{y} \\
z=1, y=2, x=2 / 3,\left[\begin{array}{c}
2 / 3 \\
2 \\
1
\end{array}\right]
\end{gathered}
$$

b) (3 points) What are the pivots in in the row reduced A ?

$$
3,-2,2
$$

c) (4 points) Write down L and U for the LU decomposition of A^{T}. Write

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 / 3 & -8 / 3 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \\
A^{T}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 / 3 & 1 & 0 \\
-8 / 3 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 & 0 & 0 \\
4 / 3 & 1 & 0 \\
-8 / 3 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & -3 & 6 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right]
\end{gathered}
$$

d) (extra credit: 3 points) What are the pivots of A^{T} ?

$$
3,-2,2
$$

e) (3 points) Give an example of a matrix that cannot be put into LU form.

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Problem 3: a) (8 points) Use the normal equations to find the least squares solution to $A x=b$. In other words, find vector $\vec{x} \in \mathbb{R}^{2}$ such that $A \vec{x}$ is closest to \vec{b}, where

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 1
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] . \\
A^{T}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \\
A^{T} A=\left[\begin{array}{ll}
2 & 2 \\
2 & 3
\end{array}\right], A^{T} \vec{b}=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
\vec{x}=\left[\begin{array}{c}
-1 / 2 \\
2
\end{array}\right] .
\end{gathered}
$$

$2 x+2 y=32 x+3 y=5$
b) (2 points) Find the projection of \vec{b} onto the column space of A.

$$
\vec{b}^{*}=A \vec{x}=\left[\begin{array}{c}
3 / 2 \\
3 / 2 \\
2
\end{array}\right]
$$

c) (5 points) Give an example of a matrix A and a vector b such that projection of b to $\operatorname{Col}(A)$ is always 0 .

Take the vector

$$
\vec{b}-\vec{b}^{*}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
0
\end{array}\right]
$$

which is perpendicular to $C(A)$ since $A^{T}\left(\vec{b}-\vec{b}^{*}\right)=0$.

Problem 4: a) (10 points) Find the matrix for the orthogonal projection onto the space S spanned by the two orthonormal vectors

$$
\begin{gathered}
\vec{v}_{1}=\frac{1}{3}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \text { and } \vec{v}_{2}=\frac{1}{3}\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right] \\
Q=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
1 & 2 \\
2 & -2
\end{array}\right] \\
Q^{T}=\frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & 2 \\
1 & 2 & -2
\end{array}\right] \\
P_{S}=Q Q^{T}=\frac{1}{9}\left[\begin{array}{ccc}
5 & 4 & 2 \\
4 & 5 & -2 \\
2 & -2 & 8
\end{array}\right]
\end{gathered}
$$

b) (5 points) Find the matrix for the orthogonal projection onto S^{\perp}.

$$
P_{S^{\perp}}=I-Q Q^{T}=\frac{1}{9}\left[\begin{array}{ccc}
4 & -4 & -2 \\
-4 & 4 & 2 \\
-2 & 2 & 1
\end{array}\right]
$$

c) (5 points) Given a vector $\vec{u}=\left[\begin{array}{l}p \\ q \\ r\end{array}\right]$, write down its orthogonal decomposition into components along S and S^{\perp}.

$$
\begin{gathered}
P_{S} \vec{u}=\frac{1}{9}\left[\begin{array}{c}
5 p+4 q+2 r \\
4 p+5 q-2 r \\
2 p-2 q+8 r
\end{array}\right] \\
P_{S^{\perp}} \vec{u}=\frac{1}{9}\left[\begin{array}{c}
4 p-4 q-2 r \\
-4 p+4 q+2 r \\
-2 p+2 q+r
\end{array}\right]
\end{gathered}
$$

Problem 5: (10 points) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\begin{gathered}
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
3 \\
2 \\
0 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right] \\
\vec{q}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \vec{a}_{2}=\vec{u}_{2}-\left(\vec{u}_{2} \cdot \vec{q}_{1}\right) \vec{q}_{1}=\left[\begin{array}{c}
2 \\
1 \\
-1 \\
-2
\end{array}\right], \vec{q}_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
2 \\
1 \\
-1 \\
-2
\end{array}\right] \\
\vec{a}_{3}=\vec{u}_{3}-\vec{u}_{3} \cdot \vec{q}_{1} \vec{q}_{1}-\vec{u}_{3} \cdot \vec{q}_{2} \vec{q}_{2}=\vec{u}_{3}-2 \vec{q}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right], \vec{q}_{3}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
\end{gathered}
$$

Problem 6: True or False: (3 points each, no partial credit.)
a) If the row vectors of A are linearly independent then the matrix $A A^{T}$ is invertible. TRUE
b) If a matrix has linearly independent rows, then its columns are also linearly independent. FALSE
c) A matrix that has full row rank, i.e., every row has a pivot, always has a right inverse. TRUE
d) If S is a k-dimensional subspace in \mathbb{R}^{n}, where $k<n$, then there can be vectors in S that form an orthonormal system of size n. FALSE
e) If $A^{T} A=0$ matrix, then A must be the 0 matrix. TRUE

Problem 7: (Extra credit)
U is a subspace of \mathbb{R}^{n}. Let A be a matrix whose columns are vectors in U. Let B be a matrix whose rows are vectors in U^{\perp}.
a) (4 points) What can you say about $B A$?

It is the zero matrix
b) (3 points) Is the matrix product $A B$ in general defined? No, not in general.

