
TEST 1, MATH 3406 K, FEBRUARY 13, 2020

Print Name:

This test is to be taken without calculators and notes of any sort. The allowed
time is 75 minutes. Provide exact answers; not decimal approximations! For example, if you
mean

√
2 do not write 1.414 . . . . State your work clearly, otherwise credit cannot be given.

Likewise, write legibly!

I abide by the Georgia Tech honor code. Signature:

1
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Problem 1:

a) (7 points) Row reduce the matrix below to reduced echelon form.

A =

 1 2 3 3
3 7 10 5
2 5 7 2


 1 2 3 3

0 1 1 −4
0 1 1 −4


 1 2 3 3

0 1 1 −4
0 0 0 0


 1 0 1 11

0 1 1 −4
0 0 0 0


b) (3 points) Circle the pivots in the matrix you obtain in the final step of row reduction
above.

c) (3 points) Write down a basis for the column space of A. 1
3
2

 ,

 2
7
5


d) (5 points) Find a basis for Nul(A).

−y − 11z
−y + 4z

y
z

 = y


−1
−1
1
0

+ z


−11

4
0
1


e) (2 points) What is the dimension of Nul(AT )?

The rank of the matrix is 2, the row space has three rows and hence the dimension is 1.
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Problem 2:

a) (10 points) A matrix A has an LU factorization

A =

 1 0 0
−1 1 0
2 0 1

 3 4 −8
0 −2 2
0 0 2


Solve the system A~x = ~b where

~b =

 2
−4
6


First solve

L~y = ~b , ~y =

 y1
y2
y3


 y1

y2
y3

 =

 2
−2
2


U~x = ~y

z = 1 , y = 2 , x = 2/3 ,

 2/3
2
1


b) (3 points) What are the pivots in in the row reduced A?

3,−2, 2

c) (4 points) Write down L and U for the LU decomposition of AT .
Write

A =

 1 0 0
−1 1 0
2 0 1

 3 0 0
0 −2 0
0 0 2

 1 4/3 −8/3
0 1 −1
0 0 1


AT =

 1 0 0
4/3 1 0
−8/3 −1 1

 3 0 0
0 −2 0
0 0 2

 1 −1 2
0 1 0
0 0 1


=

 1 0 0
4/3 1 0
−8/3 −1 1

 3 −3 6
0 −2 0
0 0 2


d) (extra credit: 3 points) What are the pivots of AT ?

3,−2, 2
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e) (3 points) Give an example of a matrix that cannot be put into LU form.[
0 1 1
1 1 1

]
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Problem 3: a) (8 points) Use the normal equations to find the least squares solution to

Ax = b. In other words, find vector ~x ∈ R2 such that A~x is closest to ~b, where

A =

 1 1
1 1
0 1

 and ~b =

 1
2
2

 .

AT =

[
1 1 0
1 1 1

]
ATA =

[
2 2
2 3

]
, AT~b =

[
3
5

]
2x+2y = 3 2x+3y=5

~x =

[
−1/2

2

]
.

b) (2 points) Find the projection of ~b onto the column space of A.

~b∗ = A~x =

 3/2
3/2
2


c) (5 points) Give an example of a matrix A and a vector b such that projection of b to Col(A)
is always 0.

Take the vector

~b−~b∗ =

 −1/2
1/2
0


which is perpendicular to C(A) since AT (~b−~b∗) = 0.
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Problem 4: a) (10 points) Find the matrix for the orthogonal projection onto the space S
spanned by the two orthonormal vectors

~v1 =
1

3

 2
1
2

 and ~v2 =
1

3

 1
2
−2


Q =

1

3

 2 1
1 2
2 −2


QT =

1

3

[
2 1 2
1 2 −2

]

PS = QQT =
1

9

 5 4 2
4 5 −2
2 −2 8


b) (5 points) Find the matrix for the orthogonal projection onto S⊥.

PS⊥ = I −QQT =
1

9

 4 −4 −2
−4 4 2
−2 2 1


c) (5 points) Given a vector ~u =

 p
q
r

, write down its orthogonal decomposition into com-

ponents along S and S⊥.

PS~u =
1

9

 5p + 4q + 2r
4p + 5q − 2r
2p− 2q + 8r


PS⊥~u =

1

9

 4p− 4q − 2r
−4p + 4q + 2r
−2p + 2q + r
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Problem 5: (10 points) Find an orthonormal basis for the subspace of R4 spanned by the
vectors

~u1 =


1
1
1
1

 , ~u2 =


3
2
0
−1

 , ~u3 =


2
0
0
2



~q1 =
1

2


1
1
1
1

 ,~a2 = ~u2 − (~u2 · ~q1)~q1 =


2
1
−1
−2

 , ~q2 =
1√
10


2
1
−1
−2



~a3 = ~u3 − ~u3 · ~q1~q1 − ~u3 · ~q2~q2 = ~u3 − 2~q1 =


1
−1
−1
1

 , ~q3 =
1

2


1
−1
−1
1
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Problem 6: True or False: (3 points each, no partial credit.)

a) If the row vectors of A are linearly independent then the matrix AAT is invertible. TRUE

b) If a matrix has linearly independent rows, then its columns are also linearly independent.
FALSE

c) A matrix that has full row rank, i.e., every row has a pivot, always has a right inverse.
TRUE

d) If S is a k-dimensional subspace in Rn, where k < n, then there can be vectors in S that
form an orthonormal system of size n. FALSE

e) If ATA = 0 matrix, then A must be the 0 matrix. TRUE

Problem 7: (Extra credit)

U is a subspace of Rn. Let A be a matrix whose columns are vectors in U . Let B be a matrix
whose rows are vectors in U⊥.
a) (4 points) What can you say about BA?
It is the zero matrix

b) (3 points) Is the matrix product AB in general defined? No, not in general.


