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Abstract. We study the distribution of eigenvalues of varying Toeplitz and
Hankel matrices such as

[
an+k−j

]
j,k
and

[
an+k+j

]
j,k
where an behaves roughly

like nβ for some non-0 complex number β, and n → ∞. This complements
earlier work on these matrices when the coeffi cients {an} arise from entire
functions.
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1. Introduction and Results

The distribution of eigenvalues of Toeplitz matrices [ck−j ]1≤j,k≤n is a much stud-
ied topic, especially when their entries are trigonometric moments [1], [2], [6], [8],
[10], [18], [19], [26], [29], [30]. There is a classic paper of Widom [28] dealing with
both finite and infinite Hankel matrices [cj+k]. There is a large literature on ran-
dom Hankel and Toeplitz matrices, see for example, [3], [11], [12], [13], [21], [22].
Generalizations of Toeplitz matrix sequences are considered and studied in [8].
Our interest arises from classical function theory and Padé approximation. There

is a connection to complex function theory: Polya [20] proved that if f (z) =∑∞
j=0 aj/z

j can be analytically continued to a function analytic in the complex
plane outside a set of logarithmic capacity τ ≥ 0, then

lim sup
n→∞

∣∣∣det [an−j+k]1≤j,k≤n

∣∣∣1/n2 ≤ τ .
There are many extensions of this result [5], [16].
In the recent paper [16], we analyzed distribution of the eigenvalues of such

matrices under appropriate hypotheses on

qj =
aj−1aj+1

a2
j

.

The motivation comes from Padé approximation for functions such as

(1.1) f (z) =

∞∑
j=0

zj/ (j!)
1/α

, α > 0,
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for which (cf. [14], [15])

qj = exp

(
− 1

αj
+O

(
1

j2

))
.

More generally, we considered series

f (z) =

∞∑
j=0

ajz
j ,

that satisfy

qj =
aj−1aj+1

a2
j

= exp

(
− 1

ρj

(
1 + o

(
ρ
−1/2
j

)))
,

with appropriate smoothly increasing or decreasing sequences
{
ρj
}
of positive num-

bers. We proved, under mild conditions on
{
ρj
}
, the following assertions about the

eigenvalues {λnj}nj=1 of the normalized matrix
1
an

[an+k−j ]1≤j,k≤n:
(I) The eigenvalue of largest modulus satisfies

max
1≤j≤n

|λnj | =
√

2πρn (1 + o (1)) .

(II) The set of all limit points of {λnj/
√

2πρn}1≤j≤n,n≥1 is [0, 1].
(III) The scaled zero counting measures

µn =
1

n

n∑
j=1

(Reλnj) δλnj/
√

2πρm

admit the weak convergence

(1.2) dµn
∗→ |π log t|−1/2

dt

in the sense that for each function f defined and continuous in an open subset of
the plane containing [0, 1],

(1.3) lim
n→∞

∫
f dµn =

∫ 1

0

f (t) |π log t|−1/2
dt.

The hypotheses in [16] treat a broad array of entire functions of zero, finite
positive, or infinite order, and also some power series of finite radius of convergence.
However the hypotheses exclude the case where the coeffi cients have power growth
or decay. It is the purpose of this paper to study that case. The general sequences
of Toeplitz matrices in [8] differ from our situation in that our sequences of varying
matrices require a different normalization as n→∞, and a different formulation for
the eigenvalue counting measures. Moreover, in Widom’s paper [28], the matrices
treated have the form [cj+k]0≤j,k≤n, whereas in this paper the top left-hand corner
element is am with m growing to ∞, so the results and methods are different. We
consider the Hankel matrices

Hmn = [am+k+j ]0≤j,k≤n−1

and Toeplitz matrices
Tmn = [am+k−j ]1≤j,k≤n

where an behaves roughly like nβ .
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Our approach is also quite different from that in [16], due to the different growth
rates. There we used a similarity transformation on Tmn and showed that the eigen-

values of Tmn/am behaved like those of the matrix Emn = −
[
e−

(j−k)2
2ρn

]
1≤j,k≤n

.

There roughly O (
√
n) central bands of the matrix dominate and one can compute

the asymptotics of the trace of Ekmn for each fixed k = 0, 1, 2,... . This approach
fails for the sequences we consider here, as all bands contribute, and indeed we get
a different weak limit from that above.

2. Hankel matrices

In this section, we state our results for Hankel matrices [am+j+k]0≤j,k≤n−1 where
the aj grow or decay like jβ . Of course if β is real, these matrices are real and
symmetric, so have real eigenvalues. In the special case, where β < 0 and aj = jβ ,
these matrices are actually positive definite, so have positive eigenvalues. Indeed
this follows directly from the fact that for β < 0 and j ≥ 1.

jβ =
1

Γ (−β)

∫ 1

0

sj
(

log
1

s

)−β−1

s−1ds.

This identity in turn follows from the standard integral for the gamma function

Γ (−β) =

∫ ∞
0

t−β−1e−tdt

by the substitution s = e−t/j . Our first result allows possibly complex β. As above
we let

(2.1) Hmn = [am+j+k]0≤j,k≤n−1 .

We also let Λ (Hmn/am) denote the collection of all eigenvalues of Hmn/am, and
form the weighted counting measure

(2.2) µmn =
1

n2

∑
λ∈Λ(Hmn/am)

λ2δλ/n.

Thus µmn places mass
(
λ
n

)2
at 1

nλ for each eigenvalue λ of Hmn/am. This is rather
different from the usual eigenvalue counting measures, but is needed in our situa-
tion. The weighting reflects the fact that eigenvalues of Hmn/am tend to cluster
around 0. For general sequences of Hankel and other matrices, this clustering effect
has been extensively explored - see [7], [9], [23], [27].

Theorem 2.1
Fix k ≥ 1 and R > 0. Assume m = m (n) → ∞ in such a way that m/n → R as
n → ∞. Assume that β ∈ C and given R > 0, we have as n → ∞, uniformly for
0 ≤ ` ≤ Rm,

(2.3)
am+`

am
=

(
1 +

`

m

)β
(1 + o (1)) .
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Then
(I)

lim sup
n→∞

1

n
sup {|λ| : λ ∈ Λ (Hmn/am)}

≤
∫ 1

0

max
0≤y≤1

(
1 +

x+ y

R

)Re β

dx.(2.4)

In particular, the supports of {µmn}n≥1 are contained in a compact set independent
of n.
(II)

lim sup
n→∞

|µmn| (C) ≤
∫ 1

0

∫ 1

0

(
1 +

x+ y

R

)2 Re β

dx dy.

(2.5)

(III) For k ≥ 1,

(2.6) lim
n→∞

1

nk
Tr

([
Hmn

am

]k)
= ck,

where
(2.7)

ck = Rk
∫ 1/R

0

∫ 1/R

0

...

∫ 1/R

0

(1 + t1 + t2)
β
... (1 + tk−1 + tk)

β
(1 + tk + t1)

β
dt1dt2...dtk.

Consequently for k ≥ 0,

(2.8) lim
n→∞

∫
λkdµmn (λ) = ck+2.

Corollary 2.2
Assume that β is real and all {aj} are real. Then there is a finite positive measure
ω with compact support on the real line such that for all functions f continuous on
the real line with compact support,

(2.9) lim
n→∞

∫
f (t) dµmn (t) =

∫
f (t) dω (t) .

The measure ω is uniquely determined by the moment conditions∫
tkdω (t) = ck+2, k ≥ 0.

Remarks
(a) Note that (2.3) is satisfied if an = nβbn, where

bn+`
bn

= 1 +o (1) for 0 ≤ ` ≤ Rm.
For example this is true if an = nβ (log n)

γ
(log log n)

κ for some γ, κ.
(b) If we do not assume that the {aj} are real, then we can only prove convergence
for functions f analytic in a ball center 0 of large enough radius, as in Corollary
3.2 below.
(c) It is obviously of interest to find an explicit form for ω. There is a classic
technique for simplices that provides an explicit value for similar Dirichlet-Liouville
multiple integrals [4], [25], but it does not seem to work for cubes.
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(d) Note that our eigenvalue counting measure µmn has a different normalization
and scaling to standard ones, so we canot apply standard results such as in [8].
We prove Theorem 2.1 and Corollary 2.2 in Section 4.

3. Toeplitz Matrices

As above, we let
Tmn = [am+k−j ]1≤j,k≤n .

Here we set aj = 0 if j < 0. We also let

(3.1) νmn =
1

n2

∑
λ∈Λ(Tmn/am)

λ2δλ/n.

We prove:

Theorem 3.1
Let R ≥ 1. Assume m = m (n) → ∞ in such a way that m/n → R as n → ∞.
Let β ∈ C. Assume that given ε ∈ (0, 1), we have as n → ∞, uniformly for
−m (1− ε) ≤ ` ≤ (R− 1)m,

(3.2)
am+`

am
=

(
1 +

`

m

)β
(1 + o (1)) .

If R = 1, we assume in addition that Reβ > −1 and

(3.3) lim
ε→0+

lim sup
n→∞

1

n |an|

[εn]∑
j=1

|aj |

 = 0.

Then
(I)

lim sup
n→∞

1

n
sup {|λ| : λ ∈ Λ (Tmn/am)} ≤

∫ 1

0

max
0≤y≤1

(
1 +

x− y
R

)Re β

dx.

In particular, the supports of {νmn}n≥1 are contained in a compact set independent
of n.
(II)

lim sup
n→∞

|νmn| (C) ≤
∫ 1

0

∫ 1

0

(
1 +

x− y
R

)2 Re β

dx dy.

(III) For k ≥ 1,

lim
n→∞

1

nk
Tr

([
Tmn
am

]k)
= dk,

where

dk = Rk
∫ 1/R

0

∫ 1/R

0

...

∫ 1/R

0

(1 + t1 − t2)
β
... (1 + tk−1 − tk)

β
(1 + tk − t1)

β
dt1dt2...dtk.

Consequently for k ≥ 0,

(3.4) lim
n→∞

∫
λkdνmn (λ) = dk+2.

Corollary 3.2
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There is a finite complex measure ω with compact support in the plane such that for
all functions f analytic in the ball center 0, radius

∫ 1

0
max0≤y≤1

(
1 + x−y

R

)Re β
dx,

(3.5) lim
n→∞

∫
f (t) dνmn (t) =

∫
f (t) dω (t) .

The measure ω admits the moment conditions∫
tkdω (t) = dk+2, k ≥ 0.

Here in the case R = 1, we assume Reβ > −1.

We note that it is not clear if the complex valued measure ω is uniquely de-
termined by the moment conditions, as it is supported in the complex plane. We
prove the results of this section in Section 5.

4. Proof of Theorem 2.1 and Corollary 2.2

Proof of Theorem 2.1(I)
It follows from Gershgorin’s Theorem [17, p. 146] that every eigenvalue λ of
Hmn/am satisfies

|λ|
n
≤ max

0≤j≤n−1

1

n

n−1∑
k=0

∣∣∣∣am+k+j

am

∣∣∣∣ .
Our hypothesis (2.3) gives uniformly for 0 ≤ j, k ≤ n− 1,∣∣∣∣am+k+j

am

∣∣∣∣ =

∣∣∣∣∣
(

1 +
k + j

m

)β
(1 + o (1))

∣∣∣∣∣
=

(
1 +

k + j

Rn (1 + o (1))

)Re β

(1 + o (1))

≤ max
1≤`≤n

(
1 +

k + `

Rn

)Re β

(1 + o (1)) ,

so that

|λ|
n

≤ 1

n

n−1∑
k=0

max
0≤y≤1

(
1 +

k

Rn
+
y

R

)Re β

+ o (1)

→
∫ 1

0

max
0≤y≤1

(
1 +

x

R
+
y

R

)Re β

dx

as n→∞. �

Proof of Theorem 2.1(II)
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By Schur’s Inequality [17, p. 142],

|µmn| (C) =
1

n2

∑
λ∈Λ(Hmn/am)

|λ|2 ≤ 1

n2

n−1∑
j,k=0

∣∣∣∣am+j+k

am

∣∣∣∣2

=
1

n2

n−1∑
j,k=0

∣∣∣∣∣
(

1 +
j + k

m

)β
(1 + o (1))

∣∣∣∣∣
2

=
1

n2

n−1∑
j,k=0

(
1 +

j + k

Rn

)2 Re β

(1 + o (1))

→
∫ 1

0

∫ 1

0

(
1 +

x+ y

R

)2 Re β

dx dy

as n→∞. �

Proof of Theorem 2.1(III)
Now

1

nk
Tr

([
Hmn

am

]k)

=
1

nk

n−1∑
j1=0

n−1∑
j2=0

...

n−1∑
jk=0

am+j1+j2

am

am+j2+j3

am
...
am+jk−1+jk

am

am+jk+j1

am

=
1

nk

n−1∑
j1=0

n−1∑
j2=0

...

n−1∑
jk=0

(
1 +

j1 + j2
m

)β (
1 +

j2 + j3
m

)β
...

(
1 +

jk + j1
m

)β
(1 + o (1))

=
1

nk

n−1∑
j1=0

n−1∑
j2=0

...

n−1∑
jk=0

(
1 +

j1 + j2
nR (1 + o (1))

)β (
1 +

j2 + j3
nR (1 + o (1))

)β
...

(
1 +

jk + j1
nR (1 + o (1))

)β
(1 + o (1))

=
1

nk

n−1∑
j1=0

n−1∑
j2=0

...

n−1∑
jk=0

(
1 +

j1 + j2
nR

)β (
1 +

j2 + j3
nR

)β
...

(
1 +

jk + j1
nR

)β
+ o (1) ,

since each of the nk terms are bounded independently of n and each index ji, 1 ≤
i ≤ k. The sum in the last line is a Riemann sum for the multiple integral∫ 1

0

∫ 1

0

...

∫ 1

0

(
1 +

x1 + x2

R

)β
...

(
1 +

xk−1 + xk
R

)β (
1 +

xk + x1

R

)β
dx1dx2...dxk

and so we obtain the result (2.7), after making the substitution xj = Rtj for
1 ≤ j ≤ k. Finally, from (2.2),∫

λjdµmn (λ) =
1

nj+2
Tr

([
Hmn

am

]j+2
)
.

Then (2.8) follows. �

Proof of Corollary 2.2
Firstly as Hmn/am is real and symetric, all its eigenvalues are real. It follows that
µmn is a positive measure supported on the real line. Moreover, Theorem 2.1 shows
that the supports of all µmn are contained in a bounded interval independent of n,
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while their total mass is bounded independent of n. By Helly’s Theorem (or if you
prefer the Banach-Alaoglu Theorem) every subsequence of {µmn} contains another
subsequence converging weakly to some positive measure ω with compact support
in the real line. It follows from Theorem 2.3(III) that for j ≥ 0,∫

tjdω (t) = cj+2.

As the Hausdorff moment problem (or moment problem for a bounded interval)
has a unique solution, ω is independent of the subsequence. Then the full sequence
{µmn} converges weakly to ω. �
For the largest eigenvalue for this positive case, we prove:

Lemma 4.1
Assume β is real and all {aj} are real. Let λmax denote the largest eigenvalue of
Hmn/am. Then

lim inf
n→∞

1

n
λmax ≥

∫ 1

0

∫ 1

0

(
1 +

x+ y

R

)β
dx dy

and

lim sup
n→∞

1

n
λmax ≤

(∫ 1

0

∫ 1

0

(
1 +

x+ y

R

)2β

dx dy

)1/2

.

Proof
As Hmn/am is real symmetric, its largest eigenvalue λmax satisfies

λmax = sup


n−1∑
j,k=0

am+j+k

am
xjxk :

n−1∑
j=0

x2
j = 1

 .

Choosing all xj = 1√
n
, we see much as above that

lim inf
n→∞

1

n
λmax

≥ lim
n→∞

1

n2

n−1∑
j,k=0

(
1 +

j + k

Rn

)β
(1 + o (1))

=

∫ 1

0

∫ 1

0

(
1 +

x+ y

R

)β
dx dy.

In the other direction, two applications of the Cauchy-Schwarz inequality give, if∑n−1
j=0 x

2
j = 1, ∣∣∣∣∣∣

n−1∑
j=0

n−1∑
k=0

am+j+k

am
xjxk

∣∣∣∣∣∣
≤

n−1∑
j=0

|xj |
(
n−1∑
k=0

(
am+j+k

am

)2
)1/2(n−1∑

k=0

x2
k

)1/2

≤

n−1∑
j=0

n−1∑
k=0

(
am+j+k

am

)2
1/2n−1∑

j=0

x2
j

1/2

,
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so much as above,

lim sup
n→∞

1

n
λmax

≤ lim
n→∞

 1

n2

n−1∑
j,k=0

(
1 +

j + k

Rn

)2β

(1 + o (1))

1/2

=

(∫ 1

0

∫ 1

0

(
1 +

x+ y

R

)2β

dx dy

)1/2

.

5. Proof of Theorem 3.1 and Corollary 3.2

Toeplitz matrices are more delicate, as reflected both in the hypotheses and
proofs. In the sequel, we let

φ (ε) = lim sup
n→∞

1

n |an|

[εn]+1∑
j=1

|aj | , ε ∈ [0, 1].

If R = 1, our hypothesis (3.3) is that φ (ε)→ 0 as ε→ 0+.

Proof of Theorem 3.1(I)
It follows from Gershgorin’s Theorem that every eigenvalue λ of Tmn/am satisfies

(5.1)
|λ|
n
≤ max

1≤j≤n

1

n

n∑
k=1

∣∣∣∣am+k−j
am

∣∣∣∣ .
Assume first R > 1. We can use our asymptotic (3.2) to deduce that

|λ|
n

≤ max
1≤j≤n

1

n

n∑
k=1

∣∣∣∣∣
(

1 +
k − j
m

)β
(1 + o (1))

∣∣∣∣∣
≤ max

1≤j≤n

1

n

n∑
k=1

(
1 +

k − j
m

)Re β

+ o (1)

≤ max
1≤j≤n

1

n

n∑
k=1

(
1 +

k − j
Rn (1 + o (1))

)Re β

+ o (1)

≤ 1

n

n∑
k=1

max
0≤y≤1

(
1 +

k

Rn
− y

R

)Re β

+ o (1)

→
∫ 1

0

max
0≤y≤1

(
1 +

x− y
R

)Re β

dx.

Now suppose that R = 1. Choose a subsequence S of integers n and then for n ∈ S,
choose j = j (n) ∈ [1, n] , such that

(5.2) lim sup
n→∞

(
max

1≤j≤n

1

n

n∑
k=1

∣∣∣∣am+k−j
am

∣∣∣∣
)

= lim
n→∞,n∈S

1

n

n∑
k=1

∣∣∣∣am+k−j(n)

am

∣∣∣∣ .
By choosing a further subsequence, which we also denote by S, we may assume
that for some α ∈ [0, 1] ,

lim
n→∞

j (n)

n
= α.



10 GIDON KOWALSKY1 AND DORON S. LUBINSKY2

Fix ε ∈
(
0, 1

2

)
. Observe that if k − j ≥ − (1− ε)m, we can apply (3.2). Here as

n→∞, this inequality is asymptotically equivalent to k ≥ (α+ ε− 1)n (1 + o (1)).
Then for n ∈ S and j = j (n) ,

1

n

∑
k:1≤k≤n

and k−j≥−(1−ε)m

∣∣∣∣am+k−j
am

∣∣∣∣
≤ 1

n

∑
k≤n:k≥max{1,(α+ε−1)n(1+o(1))}

∣∣∣∣∣
(

1 +
k − j
m

)β
(1 + o (1))

∣∣∣∣∣
≤ 1

n

∑
k≤n:k≥max{1,(α+ε−1)n(1+o(1))}

(
1 +

k − αn (1 + o (1))

n (1 + o (1))

)Re β

+ o (1)

=

∫ 1

max{0,α+ε−1}
(1 + x− α)

Re β
dx+ o (1) .

Next, recall that aj = 0 for j < 0. If k − j ≤ − (1− ε)m, then m + k − j ≤ εm.
Then as m/n→ 1 as n→∞, we have for large enough n and j ≥ 1,

1

n

∑
k:1≤k≤n

and k−j≤−(1−ε)m

∣∣∣∣am+k−j
am

∣∣∣∣
≤ 1 + o (1)

m |am|

[εm]+1∑
`=1

|a`| ≤ φ (ε) + o (1) .

Adding the two sums together, we obtain

lim sup
n→∞

(
max

1≤j≤n

1

n

n∑
k=1

∣∣∣∣am+k−j
am

∣∣∣∣
)

≤
∫ 1

max{0,α+ε−1}
(1 + x− α)

Re β
dx+ φ (ε) .

Letting ε→ 0+, and using Dominated Convergence, we obtain

lim sup
n→∞

(
max

1≤j≤n

1

n

n∑
k=1

∣∣∣∣am+k−j
am

∣∣∣∣
)
≤
∫ 1

max{0,α−1}
(1 + x− α)

Re β
dx

≤
∫ 1

0

max
0≤y≤1

(1 + x− y)
Re β

dx.

So we obtain the result for R = 1. �

Proof of Theorem 3.1(II)
As in the proof of Theorem 2.1(II), Schur’s inequality gives

|νmn| (C) =
1

n2

∑
λ∈Λ(Tmn/am)

|λ|2 ≤ 1

n2

n−1∑
j,k=0

∣∣∣∣am+k−j
am

∣∣∣∣2 .
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Suppose first R > 1. Then for large enough n, if 0 ≤ j, k ≤ n− 1,

m+ k − j ≥ Rn (1 + o (1))− n+ 1

≥ (R− 1)n+ o (n)

≥ R− 1

R
m+ o (m) ,

so uniformly for such j, k, (3.2) gives

(5.3)
am+k−j
am

=

(
1 +

k − j
Rn

)β
(1 + o (1)) .

Then

|νmn| (C) ≤ 1

n2

n−1∑
j,k=0

∣∣∣∣am+k−j
am

∣∣∣∣2

≤ 1

n2

n−1∑
j,k=0

(
1 +

k − j
Rn

)2 Re β

(1 + o (1))

→
∫ 1

0

∫ 1

0

(
1 +

y − x
R

)2 Re β

dx dy

as n→∞. Next, let R = 1. Much as above, we can see that given ε ∈ (0, 1),

1

n2

∑
0≤j,k≤n−1:k−j≥−(1−ε)m

∣∣∣∣am+k−j
am

∣∣∣∣2
may be bounded above by a Riemann sum for the integral∫ ∫

{(x,y):x,y∈[0,1] and y−x≥−(1−ε)}
(1 + y − x)

2 Re β
dx dy

multiplied by 1+o (1). To deal with the tail sum, first observe that as m = m (n) =
m (1 + o (1)),

1

n

3n∑
j=1

|aj |
|am|

≤ (1 + o (1))φ

(
1

4

)
+

1

n

3n∑
j=[ 14n]

∣∣∣∣ ajan
∣∣∣∣

≤ (1 + o (1))φ

(
1

4

)
+

1 + o (1)

n

2n∑
`=[ 14n]−n

∣∣∣∣an+`

an

∣∣∣∣
≤ (1 + o (1))φ

(
1

4

)
+

1 + o (1)

n

2n∑
`=[ 14n]−n

∣∣∣∣1 +
`

n

∣∣∣∣Re β

(1 + o (1))

≤ (1 + o (1))φ

(
1

4

)
+ (1 + o (1))

∫ 2

−3/4

|1 + x|Re β
dx.

It follows that for some C independent of m,n,

(5.4)
1

n

3n∑
j=1

|aj |
|am|

≤ C.
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Then

1

n2

∑
0≤j,k≤n−1:k−j≤−(1−ε)m

∣∣∣∣am+k−j
am

∣∣∣∣2

≤
(

1

n
sup

1≤`≤2m

∣∣∣∣ a`am
∣∣∣∣)
 1

n

[εm]∑
`=1

∣∣∣∣ a`am
∣∣∣∣


≤ Cφ (ε) ,

in view of (5.4). This and the estimate above give

lim sup
n→∞

|νmn| (C)

= lim sup
n→∞

1

n2

∑
λ∈Λ(Tmn/am)

|λ|2

≤
∫ ∫

{(x,y):x,y∈[0,1] and y−x≥−(1−ε)}
(1 + y − x)

2 Re β
dx dy + Cφ (ε) .

Letting ε→ 0+ and using our hypothesis (3.3) gives the result. �

Proof of Theorem 3.1(III)
Step 1 Suppose first R > 1. Then for large enough n, we have (5.3) and also

(5.5) sup
1≤j,`≤n

∣∣∣∣am+j−`
am

∣∣∣∣ = O (1) .

Then

1

nk
Tr

([
Tmn
am

]k)

=
1

nk

n∑
j1=1

n∑
j2=1

...

n∑
jk=1

am+j2−j1
am

am+j3−j2
am

...
am+jk−jk−1

am

am+j1−jk
am

=
1

nk

n∑
j1=1

n∑
j2=1

...

n∑
jk=1

(
1 +

j2 − j1
m

)β (
1 +

j3 − j2
m

)β
...

(
1 +

j1 − jk
m

)β
(1 + o (1))

=
1

nk

n∑
j1=1

n∑
j2=1

...

n∑
jk=1

(
1 +

j2 − j1
Rn (1 + o (1))

)β (
1 +

j3 − j2
Rn (1 + o (1))

)β
...

(
1 +

j1 − jk
Rn (1 + o (1))

)β
(1 + o (1))

=
1

nk

n∑
j1=1

n∑
j2=1

...

n∑
jk=1

(
1 +

j2 − j1
Rn

)β (
1 +

j3 − j2
Rn

)β
...

(
1 +

j1 − jk
Rn

)β
+ o (1) .

The sum in the last line is a Riemann sum for the mutiple integral∫ 1

0

∫ 1

0

...

∫ 1

0

(
1 +

x2 − x1

R

)β (
1 +

x3 − x2

R

)β
...

(
1 +

x1 − xk
R

)β
dx1dx2...dxk

and so we obtain the result, after making the substitution xj = Rtj for 1 ≤ j ≤ k.
Step 2 Now we turn to the more delicate case where R = 1 and Reβ > −1. Fix
ε > 0. We observe that if k− j ≥ −m (1− ε), then we have (5.3). Then identifying
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jk+1 = j1,

1

nk

n∑
1≤j1,j2,...,jk≤n

all ji+1−ji≥−m(1−ε)

am+j2−j1
am

am+j3−j2
am

...
am+jk−jk−1

am

am+j1−jk
am

=
1

nk

n∑
1≤j1,j2,...,jk≤n

all ji+1−ji≥−m(1−ε)

(
1 +

j2 − j1
m

)β (
1 +

j3 − j2
m

)β
...

(
1 +

j1 − jk
m

)β
(1 + o (1))

=
1

nk

n∑
1≤j1,j2,...,jk≤n

all ji+1−ji≥−m(1−ε)

(
1 +

j2 − j1
n

)β (
1 +

j3 − j2
n

)β
...

(
1 +

j1 − jk
n

)β
+ o (1)

=

∫
...

∫
S

(1 + x2 − x1)
β

(1 + x3 − x2)
β
... (1 + x1 − xk)

β
dx1dx2...dxk + o (1)

(5.6)

where S =
{

(x1, x2, ..., xk) ∈ [0, 1]
k

: xj+1 − xj ≥ − (1− ε) for each j
}
. Here we

identify xk+1 = x1. To treat the remaining terms in the sum where at least one
ji+1−ji ≤ −m (1− ε), we proceed as follows: necessarily ji+1 ≤ n−m+εm ≤ 2εm,
for large enough n, while 1 ≤ m+ ji+1 − ji ≤ εm, so

1

n

∑
ji:ji+1−ji≤−m(1−ε)

∣∣∣∣am+ji+1−ji
am

∣∣∣∣ ≤ 1 + o (1)

n

1

|am|

[εm]∑
`=1

|a`| ≤ (1 + o (1))φ (ε) .

Then

1

nk

n∑
1≤j1,j2,...,jk≤n

for some i, ji+1−ji≥−m(1−ε)

∣∣∣∣am+j2−j1
am

am+j3−j2
am

...
am+jk−jk−1

am

am+j1−jk
am

∣∣∣∣
≤ Ck−1 (1 + o (1))φ (ε) ,

recall (5.4). We now combine this with (5.6) and then let ε→ 0+ to get the result.
Also (3.4) follows from (3.1). �

Proof of Corollary 3.2
Since {νmn} have support in a compact set independent of n and total mass
bounded independent of n, we can choose weakly convergent subsequences with
limit ω. (One can think of applying Helly’s Theorem to the decomposition of µmn
into first real and imaginary parts and then positive and negative parts of each of
those). All weak limits of subsequences have the same moments {dj+2}j≥0. We
have that if f is a polynomial,

lim
n→∞

∫
P (t) dνmn (t) =

∫
P (t) dω (t) .

Note that the same limit holds for the full sequence of integers because all weak
limits ω have the same power moments. As such polynomials are dense in the class
of functions analytic in any ball, the result follows. �
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