The evolution of subcritical Achlioptas processes

Lutz Warnke
University of Cambridge

Joint work with Oliver Riordan
Achlioptas processes

- Start with an empty graph on n vertices
- In each step: pick two random edges, add one of them to the graph (using some rule)

Remarks

- Yields family of random graph processes
- Contains ‘classical’ Erdős–Rényi process

Motivation

- Improve our understanding of phase transition phenomena
- Test / develop methods for analyzing processes with dependencies
Key example (suggested by Achlioptas)

Fraction of vertices in largest component after tn steps: $L_1(tn)/n$

Goal of this talk

Understand how these evolve over time.
Widely studied Achlioptas rules

Size rules

Decision (which edge to add) depends *only* on component sizes c_1, \ldots, c_4

- Product rule (Bollobás)

Bounded-size rules (most of previous work)

All component sizes larger than some constant B are treated the same

- Erdős–Rényi ($B = 0$)
- Bohman–Frieze ($B = 1$)
Previous work

Bounded-size rules (Spencer–Wormald, Bohman–Kravitz, Riordan–W., . . .)

For any bounded-size rule \mathcal{R} the key statistics are convergent:

- **Small components**: $N_k(tn) \sim \varphi_k^\mathcal{R}(t)n$
- **Largest component**: $L_1(tn) \sim \varphi^\mathcal{R}(t)n$

Proofs use Wormald’s differential equation method

- $\varphi_k^\mathcal{R}$ determined by an associated system of DEs

Size rules (Riordan–W.)

For any ‘sensible’ size rule \mathcal{R} the key statistics are convergent
IF an associated system of differential equations has a *unique* solution.

- ‘Direct’ proof
- Caveat: unique solution
 - Well-known for ‘nice’ size rules (e.g., bounded-size rules)
 - Open problem for general size rules (e.g., product rule)
New Result for Size Rules

Susceptibility \(\chi(G) = \frac{1}{n} \sum_{k \geq 1} kN_k(G) \)
- Expected size of component containing randomly selected vertex

Riordan–W. (simplified)

Any size rule \(\mathcal{R} \) is ‘well-behaved’ until the critical time \(t_c = t_c^\mathcal{R} \), where the susceptibility \(\chi \) diverges. For \(t < t_c \) whp

- **Small components**: \(N_k(tn) \sim \varphi_k^\mathcal{R}(t)n \)
- **Exponential tails**: \(N_k(tn) \leq Ae^{-ak}n \)
- **Largest component**: \(L_1(tn) \leq B \log n \)

Remarks
- Removes earlier uniqueness assumption up to \(t_c \)
- \(t_c \) is important time in evolution
Critical time t_c

Conjecture for size rules (simplified)

For $t > t_c$ we have a giant component: $L_1(tn) = \Omega(n)$

- Was known for bounded-size rules (Spencer–Wormald)
- True for certain classes of size rules (e.g., maximum product rule)

Convergence up to t_c seems best possible

Beyond t_c some rules look *nonconvergent* in simulations
Inductively establish concentration

Need: evolution starting from initial graph F
- Assumption: initial graph F is ‘nice’
- Conclusion: graph after σn steps is again ‘nice’ (if σ small enough)

In comparison to bounded size rules
- We track key statistics \textit{without} using differential equations
- We \textit{investigate dependencies} among choices in more detail
For size rules, decisions can only propagate inside clusters.

Here we ignore order of pairs.

Inside each cluster:

- Order of the pairs uniquely determines decisions of any size rule.
Glimpse of the proof

Determine component size $|C_v|$ via two-step exposure

- Reveal all *pairs* of edges offered
 - Determine relevant *cluster* for v \(\approx \) Branching process
- Reveal *order* of all (relevant) *pairs*
 - Apply size rule R inside *cluster*

Why do we need susceptibility $\chi < \infty$?

- Branching process must be ‘sub-critical’ (need $\sigma \leq c\chi^{-1}$)
- Only ‘few’ edges/components influence $|C_v|$ \(\rightarrow \) Concentration
First rigorous result for size rules (Riordan–W.)

Key statistics are ‘well-behaved’ until the susceptibility χ diverges.

Open problem

How can we analyze the later evolution of size rules?