The Secret Life of Graphs

Matt Baker

Georgia Institute of Technology

Benjamin Peirce Centennial Conference
June 12, 2016
I will attempt to retrace the rather non-linear development of my mathematical career, which I would characterize as a deterministic simulation of a random walk.
Table of contents

1. Modular curves
2. Arakelov theory
3. Dynamical systems
4. Berkovich spaces
5. Tropical geometry
In my thesis, I studied effective versions of the Manin–Mumford conjecture for modular curves. Specifically, I computed the intersection of \(X_0(p)(\mathbb{Q}) \) with \(J_0(p)(\mathbb{Q})^{\text{tors}} \).

For me the big question was: what to do next?
In my thesis, I studied effective versions of the Manin–Mumford conjecture for modular curves. Specifically, I computed the intersection of $X_0(p)(\bar{\mathbb{Q}})$ with $J_0(p)(\bar{\mathbb{Q}})^\text{tors}$.

For me the big question was: what to do next?
Barry Mazur suggested looking at points of small canonical height on $X_0(p)$.

Mazur’s suggestion was motivated by the Bogomolov conjecture, proved by Ullmo and Zhang:

Theorem (Ullmo, 1998)

Let K be a number field and let X/K be a smooth proper algebraic curve of genus at least 2 embedded in its Jacobian J. Let $\hat{h} : J(K) \to \mathbb{R}_{\geq 0}$ be the canonical height associated to the theta divisor. Then there exists $\varepsilon > 0$ such that

$$\{P \in X(K) : \hat{h}(P) < \varepsilon\}$$

is finite.
Barry Mazur suggested looking at points of small canonical height on $X_0(p)$.

Mazur’s suggestion was motivated by the Bogomolov conjecture, proved by Ullmo and Zhang:

Theorem (Ullmo, 1998)

Let K be a number field and let X/K be a smooth proper algebraic curve of genus at least 2 embedded in its Jacobian J. Let $\hat{h} : J(K) \to \mathbb{R}_{\geq 0}$ be the canonical height associated to the theta divisor. Then there exists $\varepsilon > 0$ such that

$$\{P \in X(K) : \hat{h}(P) < \varepsilon\}$$

is finite.
The Bogomolov conjecture

Barry Mazur suggested looking at points of small canonical height on $X_0(p)$.

Mazur’s suggestion was motivated by the Bogomolov conjecture, proved by Ullmo and Zhang:

Theorem (Ullmo, 1998)

Let K be a number field and let X/K be a smooth proper algebraic curve of genus at least 2 embedded in its Jacobian J. Let $\hat{h} : J(K) \to \mathbb{R}_{\geq 0}$ be the canonical height associated to the theta divisor. Then there exists $\varepsilon > 0$ such that

$$\{ P \in X(K) : \hat{h}(P) < \varepsilon \}$$

is finite.
Equidistribution of small points

The proof of the Bogomolov conjecture is based on an equidistribution theorem for small points whose proof relies on Arakelov intersection theory.

- Let A/K be an abelian variety over a number field K, and let $\{P_n\}$ be a sequence of points in $A(\bar{K})$.
- We say $\{P_n\}$ is small if $\hat{h}(P_n) \to 0$ and generic if no subsequence is contained in a proper subvariety of A.
- Let δ_n denote the discrete probability measure on $A(\mathbb{C})$ supported equally on the Galois conjugates of P_n.

Theorem (Szpiro-Ullmo-Zhang, 1997)

*If the sequence $\{P_n\}$ is generic and small, then δ_n converges weakly to the unit Haar measure on $A(\mathbb{C})$.***
The proof of the Bogomolov conjecture is based on an equidistribution theorem for small points whose proof relies on Arakelov intersection theory.

- Let A/K be an abelian variety over a number field K, and let $\{P_n\}$ be a sequence of points in $A(\bar{K})$.
- We say $\{P_n\}$ is small if $\hat{h}(P_n) \to 0$ and generic if no subsequence is contained in a proper subvariety of A.
- Let δ_n denote the discrete probability measure on $A(\mathbb{C})$ supported equally on the Galois conjugates of P_n.

Theorem (Szpiro-Ullmo-Zhang, 1997)

If the sequence $\{P_n\}$ is generic and small, then δ_n converges weakly to the unit Haar measure on $A(\mathbb{C})$.
Equidistribution of small points

The proof of the Bogomolov conjecture is based on an equidistribution theorem for small points whose proof relies on Arakelov intersection theory.

- Let A/K be an abelian variety over a number field K, and let $\{P_n\}$ be a sequence of points in $A(\bar{K})$.
- We say $\{P_n\}$ is small if $\hat{h}(P_n) \to 0$ and generic if no subsequence is contained in a proper subvariety of A.
- Let δ_n denote the discrete probability measure on $A(\mathbb{C})$ supported equally on the Galois conjugates of P_n.

Theorem (Szpiro-Ullmo-Zhang, 1997)

If the sequence $\{P_n\}$ is generic and small, then δ_n converges weakly to the unit Haar measure on $A(\mathbb{C})$.
Equidistribution of small points

The proof of the Bogomolov conjecture is based on an equidistribution theorem for small points whose proof relies on Arakelov intersection theory.

- Let A/K be an abelian variety over a number field K, and let $\{P_n\}$ be a sequence of points in $A(\bar{K})$.
- We say $\{P_n\}$ is small if $\hat{h}(P_n) \to 0$ and generic if no subsequence is contained in a proper subvariety of A.
- Let δ_n denote the discrete probability measure on $A(\mathbb{C})$ supported equally on the Galois conjugates of P_n.

Theorem (Szpiro-Ullmo-Zhang, 1997)

If the sequence $\{P_n\}$ is generic and small, then δ_n converges weakly to the unit Haar measure on $A(\mathbb{C})$.
Equidistribution of small points

The proof of the Bogomolov conjecture is based on an equidistribution theorem for small points whose proof relies on Arakelov intersection theory.

- Let A/K be an abelian variety over a number field K, and let $\{P_n\}$ be a sequence of points in $A(\bar{K})$.
- We say $\{P_n\}$ is small if $\hat{h}(P_n) \to 0$ and generic if no subsequence is contained in a proper subvariety of A.
- Let δ_n denote the discrete probability measure on $A(\mathbb{C})$ supported equally on the Galois conjugates of P_n.

Theorem (Szpiro-Ullmo-Zhang, 1997)

*If the sequence $\{P_n\}$ is generic and small, then δ_n converges weakly to the unit Haar measure on $A(\mathbb{C})$.***
Motivated in part by Mazur’s question (which I never resolved!):

- Brian Conrad, Tonghai Yang, and I formed a reading group which worked through Lang’s book on Arakelov theory.
- Tonghai Yang and I read the Gross–Zagier paper together.
- I read various papers related to the Bogomolov conjecture, including Shouwu Zhang’s paper ”Admissible Pairing on a Curve”.
- I taught a topics course on heights (local decomposition of global heights, equidistribution theorems, Lehmer’s conjecture, heights over abelian extensions, Call–Silverman dynamical heights, Elkies’ abc implies Mordell, Mumford’s gap principle, . . .).
A good excuse to learn some new mathematics

Motivated in part by Mazur’s question (which I never resolved!):

- Brian Conrad, Tonghai Yang, and I formed a reading group which worked through Lang’s book on Arakelov theory.
- Tonghai Yang and I read the Gross–Zagier paper together.
- I read various papers related to the Bogomolov conjecture, including Shouwu Zhang’s paper ”Admissible Pairing on a Curve”.
- I taught a topics course on heights (local decomposition of global heights, equidistribution theorems, Lehmer’s conjecture, heights over abelian extensions, Call–Silverman dynamical heights, Elkies’ abc implies Mordell, Mumford’s gap principle,…).
Motivated in part by Mazur’s question (which I never resolved!):

- Brian Conrad, Tonghai Yang, and I formed a reading group which worked through Lang’s book on Arakelov theory.
- Tonghai Yang and I read the Gross–Zagier paper together.
- I read various papers related to the Bogomolov conjecture, including Shouwu Zhang’s paper "Admissible Pairing on a Curve".
- I taught a topics course on heights (local decomposition of global heights, equidistribution theorems, Lehmer’s conjecture, heights over abelian extensions, Call–Silverman dynamical heights, Elkies’ abc implies Mordell, Mumford’s gap principle,...).
A good excuse to learn some new mathematics

Motivated in part by Mazur’s question (which I never resolved!):

- Brian Conrad, Tonghai Yang, and I formed a reading group which worked through Lang’s book on Arakelov theory.
- Tonghai Yang and I read the Gross–Zagier paper together.
- I read various papers related to the Bogomolov conjecture, including Shouwu Zhang’s paper ”Admissible Pairing on a Curve”.
- I taught a topics course on heights (local decomposition of global heights, equidistribution theorems, Lehmer’s conjecture, heights over abelian extensions, Call–Silverman dynamical heights, Elkies’ abc implies Mordell, Mumford’s gap principle,…).
A good excuse to learn some new mathematics

Motivated in part by Mazur’s question (which I never resolved!):

- Brian Conrad, Tonghai Yang, and I formed a reading group which worked through Lang’s book on Arakelov theory.
- Tonghai Yang and I read the Gross–Zagier paper together.
- I read various papers related to the Bogomolov conjecture, including Shouwu Zhang’s paper ”Admissible Pairing on a Curve”.
- I taught a topics course on heights (local decomposition of global heights, equidistribution theorems, Lehmer’s conjecture, heights over abelian extensions, Call–Silverman dynamical heights, Elkies’ abc implies Mordell, Mumford’s gap principle, . . .).
A smattering of Arakelov theory

- In Arakelov intersection theory for algebraic curves over a number field, one uses algebraic intersection theory on regular models at finite places and potential theory on Riemann surfaces at infinite places.

- The Archimedean component of the intersection pairing is a normalized Arakelov-Green function $g(x, y)$. It satisfies the differential equation

$$
\Delta_y g(x, y) = \delta_x - \mu
$$

for some fixed volume form μ on X, together with the normalization condition

$$
\int \int_{X \times X} g(x, y) \mu(x) \mu(y) = 0.
$$
A smattering of Arakelov theory

- In Arakelov intersection theory for algebraic curves over a number field, one uses algebraic intersection theory on regular models at finite places and potential theory on Riemann surfaces at infinite places.

- The Archimedean component of the intersection pairing is a normalized Arakelov-Green function $g(x, y)$. It satisfies the differential equation

$$\Delta_y g(x, y) = \delta_x - \mu$$

for some fixed volume form μ on X, together with the normalization condition

$$\int_{X \times X} g(x, y) \mu(x) \mu(y) = 0.$$
A smattering of Arakelov theory

- In Arakelov intersection theory for algebraic curves over a number field, one uses algebraic intersection theory on regular models at finite places and potential theory on Riemann surfaces at infinite places.

- The Archimedean component of the intersection pairing is a normalized Arakelov-Green function $g(x, y)$. It satisfies the differential equation

$$\Delta_y g(x, y) = \delta_x - \mu$$

for some fixed volume form μ on X, together with the normalization condition

$$\int_{X \times X} g(x, y) \mu(x) \mu(y) = 0.$$
A smattering of Arakelov theory

- In Arakelov intersection theory for algebraic curves over a number field, one uses algebraic intersection theory on regular models at finite places and potential theory on Riemann surfaces at infinite places.

- The Archimedean component of the intersection pairing is a normalized Arakelov-Green function $g(x, y)$. It satisfies the differential equation

\[\Delta_y g(x, y) = \delta_x - \mu \]

for some fixed volume form μ on X, together with the normalization condition

\[\int \int_{X \times X} g(x, y)\mu(x)\mu(y) = 0. \]
As I mentioned, thinking about the Bogomolov conjecture got me interested in various aspects of the theory of canonical heights. In particular, I learned during that time about canonical heights associated to algebraic dynamical systems.

I started sitting in on Curt McMullen’s seminar on complex dynamics and learned some basic things about Fatou-Julia theory and the Mandelbrot set.
As I mentioned, thinking about the Bogomolov conjecture got me interested in various aspects of the theory of canonical heights. In particular, I learned during that time about canonical heights associated to algebraic dynamical systems.

I started sitting in on Curt McMullen’s seminar on complex dynamics and learned some basic things about Fatou-Julia theory and the Mandelbrot set.
Liang-Chung Hsia, a former student of Joe Silverman’s working on p-adic dynamics, was visiting Harvard that same year and we started to work together on proving a Szpiro-Ullmo-Zhang type result for polynomial dynamical systems.
One of our motivations was the following classical result of Brolin:

Theorem (Brolin, 1965)

Let \(\phi \in \mathbb{C}[z] \) be a polynomial of degree \(d \geq 2 \). Then there is a canonical probability measure \(\mu_\phi \) on \(\mathbb{P}^1(\mathbb{C}) \) with the following property. For any \(z_0 \in \mathbb{C} \) with infinite backward orbit under \(\phi \), let \(\delta_n \) be the probability measure supported equally on the points of \(\phi^{-n}(z_0) \). Then \(\delta_n \) converges weakly to \(\mu_\phi \).

This was later generalized by Lyubich (and independently [FLM]) to rational functions.

Brolin’s theorem was one of the very first uses of potential theory in complex dynamics.
The canonical measure and Brolin’s theorem

One of our motivations was the following classical result of Brolin:

Theorem (Brolin, 1965)

Let \(\phi \in \mathbb{C}[z] \) be a polynomial of degree \(d \geq 2 \). Then there is a canonical probability measure \(\mu_\phi \) on \(\mathbb{P}^1(\mathbb{C}) \) with the following property. For any \(z_0 \in \mathbb{C} \) with infinite backward orbit under \(\phi \), let \(\delta_n \) be the probability measure supported equally on the points of \(\phi(-n)(z_0) \). Then \(\delta_n \) converges weakly to \(\mu_\phi \).

This was later generalized by Lyubich (and independently [FLM]) to rational functions.

Brolin’s theorem was one of the very first uses of potential theory in complex dynamics.
One of our motivations was the following classical result of Brolin:

Theorem (Brolin, 1965)

Let $\phi \in \mathbb{C}[z]$ be a polynomial of degree $d \geq 2$. Then there is a canonical probability measure μ_ϕ on $\mathbb{P}^1(\mathbb{C})$ with the following property. For any $z_0 \in \mathbb{C}$ with infinite backward orbit under ϕ, let δ_n be the probability measure supported equally on the points of $\phi^{(-n)}(z_0)$. Then δ_n converges weakly to μ_ϕ.

This was later generalized by Lyubich (and independently [FLM]) to rational functions.

Brolin’s theorem was one of the very first uses of potential theory in complex dynamics.
The canonical measure and Brolin’s theorem

One of our motivations was the following classical result of Brolin:

Theorem (Brolin, 1965)

Let \(\phi \in \mathbb{C}[z] \) be a polynomial of degree \(d \geq 2 \). Then there is a canonical probability measure \(\mu_\phi \) on \(\mathbb{P}^1(\mathbb{C}) \) with the following property. For any \(z_0 \in \mathbb{C} \) with infinite backward orbit under \(\phi \), let \(\delta_n \) be the probability measure supported equally on the points of \(\phi(-n)(z_0) \). Then \(\delta_n \) converges weakly to \(\mu_\phi \).

This was later generalized by Lyubich (and independently [FLM]) to rational functions.

Brolin’s theorem was one of the very first uses of potential theory in complex dynamics.
An equidistribution theorem for polynomial dynamical systems

Let

\[h(x) = \sum_{\nu \in M_K} \log \max\{1, |x|_\nu\} \]

and define

\[\hat{h}_\phi(x) = \lim_{n \to \infty} \frac{1}{d^n} h(\phi^n(x)) \].

Theorem (B.-Hsia)

Let \(K \) be a number field, let \(\phi \in K[z] \) be a polynomial of degree \(d \geq 2 \), and let \(P_n \in \mathbb{P}^1(\bar{K}) \) be an infinite sequence with \(\hat{h}_\phi(P_n) \to 0 \). Let \(\delta_n \) be the probability measure on \(\mathbb{P}^1(\mathbb{C}) \) supported equally on the Galois conjugates of \(P_n \). Then \(\delta_n \) converges weakly to the canonical measure \(\mu_\phi \).
An equidistribution theorem for polynomial dynamical systems

Let

\[h(x) = \sum_{\nu \in M_K} \log \max\{1, |x|_\nu\} \]

and define

\[\hat{h}_\phi(x) = \lim_{n \to \infty} \frac{1}{d^n} h(\phi^n(x)). \]

Theorem (B.-Hsia)

Let \(K \) be a number field, let \(\phi \in K[z] \) be a polynomial of degree \(d \geq 2 \), and let \(P_n \in \mathbb{P}^1(\bar{K}) \) be an infinite sequence with \(\hat{h}_\phi(P_n) \to 0 \). Let \(\delta_n \) be the probability measure on \(\mathbb{P}^1(\mathbb{C}) \) supported equally on the Galois conjugates of \(P_n \). Then \(\delta_n \) converges weakly to the canonical measure \(\mu_\phi \).
An equidistribution theorem for polynomial dynamical systems

Let

\[h(x) = \sum_{\nu \in M_K} \log \max\{1, |x|_\nu\} \]

and define

\[\hat{h}_\phi(x) = \lim_{n \to \infty} \frac{1}{d^n} h(\phi^n(x)). \]

Theorem (B.-Hsia)

Let \(K \) be a number field, let \(\phi \in K[z] \) be a polynomial of degree \(d \geq 2 \), and let \(P_n \in \mathbb{P}^1(\bar{K}) \) be an infinite sequence with \(\hat{h}_\phi(P_n) \to 0 \). Let \(\delta_n \) be the probability measure on \(\mathbb{P}^1(\mathbb{C}) \) supported equally on the Galois conjugates of \(P_n \). Then \(\delta_n \) converges weakly to the canonical measure \(\mu_\phi \).
Remarks on the equidistribution theorem

- The main tool in our proof was the transfinite diameter.
- We also proved a complicated non-Archimedean equidistribution theorem motivated by a result of Bombieri and Zannier.
- We were unable to handle the case of rational functions at that time.
The main tool in our proof was the transfinite diameter.

We also proved a complicated non-Archimedean equidistribution theorem motivated by a result of Bombieri and Zannier.

We were unable to handle the case of rational functions at that time.
The main tool in our proof was the transfinite diameter.

We also proved a complicated non-Archimedean equidistribution theorem motivated by a result of Bombieri and Zannier.

We were unable to handle the case of rational functions at that time.
Remarks on the equidistribution theorem

- The main tool in our proof was the transfinite diameter.
- We also proved a complicated non-Archimedean equidistribution theorem motivated by a result of Bombieri and Zannier.
- We were unable to handle the case of rational functions at that time.
Laura was a graduate student of Curt McMullen, and she and I had been students together at Berkeley before Curt moved to Harvard.

In her thesis, she introduced the notion of homogeneous transfinite diameter for a subset of \mathbb{C}^2, and applied this to the dynamics of rational functions in one variable over \mathbb{C}.

I quickly realized that this would be a very useful tool for extending my work with Hsia from polynomial maps to rational functions!
Laura was a graduate student of Curt McMullen, and she and I had been students together at Berkeley before Curt moved to Harvard.

In her thesis, she introduced the notion of **homogeneous transfinite diameter** for a subset of \mathbb{C}^2, and applied this to the dynamics of rational functions in one variable over \mathbb{C}.

I quickly realized that this would be a very useful tool for extending my work with Hsia from polynomial maps to rational functions!
Laura DeMarco’s thesis

- Laura was a graduate student of Curt McMullen, and she and I had been students together at Berkeley before Curt moved to Harvard.
- In her thesis, she introduced the notion of *homogeneous transfinite diameter* for a subset of \mathbb{C}^2, and applied this to the dynamics of rational functions in one variable over \mathbb{C}.
- I quickly realized that this would be a very useful tool for extending my work with Hsia from polynomial maps to rational functions!
Laura’s work motivated the following definition:

Let K be a number field, and let v be a place of K. Let $\phi \in K(z)$ be a rational map of degree $d \geq 2$. Dehomogenize $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ as $F : \mathbb{A}^2 \to \mathbb{A}^2$, writing $F(x_1, x_2) = (F_1(x_1, x_2), F_2(x_1, x_2))$ with each F_i homogeneous of degree d.

Define

$$\hat{H}_{F,v}(x) = \lim_{d \to \infty} \frac{1}{d^n} \log \max\{|F_1^n(x)|_v, |F_2^n(x)|_v\}.$$

The v-adic dynamical Arakelov-Green function $g_{\phi,v}(x, y)$ on $\mathbb{P}^1(\mathbb{C}_v) \times \mathbb{P}^1(\mathbb{C}_v)$ is

$$g_{\phi,v}((x_1 : x_2), (y_1 : y_2)) = -\log |x_1y_2 - x_2y_1|_v + \hat{H}_{F,v}(x) + \hat{H}_{F,v}(y)$$

$$- \frac{1}{d(d - 1)} \log |\text{Res}(F_1, F_2)|_v,$$
Laura’s work motivated the following definition:
Let K be a number field, and let ν be a place of K. Let $\phi \in K(z)$ be a rational map of degree $d \geq 2$.
Dehomogenize $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ as $F : \mathbb{A}^2 \to \mathbb{A}^2$, writing $F(x_1, x_2) = (F_1(x_1, x_2), F_2(x_1, x_2))$ with each F_i homogeneous of degree d.
Define
$$\hat{H}_{F, \nu}(x) = \lim_{d \to \infty} \frac{1}{d^n} \log \max\{|F_1^{(n)}(x)|_\nu, |F_2^{(n)}(x)|_\nu\}.$$

The ν-adic dynamical Arakelov-Green function $g_{\phi, \nu}(x, y)$ on $\mathbb{P}^1(C_\nu) \times \mathbb{P}^1(C_\nu)$ is
$$g_{\phi, \nu}((x_1 : x_2), (y_1 : y_2)) = -\log |x_1 y_2 - x_2 y_1|_\nu + \hat{H}_{F, \nu}(x) + \hat{H}_{F, \nu}(y)$$
$$- \frac{1}{d(d-1)} \log |\text{Res}(F_1, F_2)|_\nu,$$
Laura’s work motivated the following definition:
Let K be a number field, and let v be a place of K. Let $\phi \in K(z)$ be a rational map of degree $d \geq 2$.
Dehomogenize $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ as $F : \mathbb{A}^2 \to \mathbb{A}^2$, writing $F(x_1, x_2) = (F_1(x_1, x_2), F_2(x_1, x_2))$ with each F_i homogeneous of degree d.
Define

$$\hat{H}_{F,v}(x) = \lim_{d \to \infty} \frac{1}{d^n} \log \max\{|F_1^n(x)|_v, |F_2^n(x)|_v\}.$$

The v-adic dynamical Arakelov-Green function $g_{\phi,v}(x, y)$ on $\mathbb{P}^1(\mathbb{C}_v) \times \mathbb{P}^1(\mathbb{C}_v)$ is

$$g_{\phi,v}((x_1 : x_2), (y_1 : y_2)) = -\log |x_1 y_2 - x_2 y_1|_v + \hat{H}_{F,v}(x) + \hat{H}_{F,v}(y) - \frac{1}{d(d-1)} \log |\text{Res}(F_1, F_2)|_v,$$
Laura’s work motivated the following definition:
Let K be a number field, and let ν be a place of K. Let $\phi \in K(z)$ be a rational map of degree $d \geq 2$.
Dehomogenize $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ as $F : \mathbb{A}^2 \to \mathbb{A}^2$, writing $F(x_1, x_2) = (F_1(x_1, x_2), F_2(x_1, x_2))$ with each F_i homogeneous of degree d.
Define
\[
\hat{H}_{F, \nu}(x) = \lim_{d \to \infty} \frac{1}{d^n} \log \max\{|F_1^n(x)|_{\nu}, |F_2^n(x)|_{\nu}\}.
\]

The ν-adic dynamical Arakelov-Green function $g_{\phi, \nu}(x, y)$ on $\mathbb{P}^1(\mathbb{C}_\nu) \times \mathbb{P}^1(\mathbb{C}_\nu)$ is
\[
g_{\phi, \nu}((x_1 : x_2), (y_1 : y_2)) = -\log |x_1y_2 - x_2y_1|_{\nu} + \hat{H}_{F, \nu}(x) + \hat{H}_{F, \nu}(y) - \frac{1}{d(d-1)} \log |\text{Res}(F_1, F_2)|_{\nu},
\]
Laura’s work motivated the following definition:
Let K be a number field, and let v be a place of K. Let $\phi \in K(z)$ be a rational map of degree $d \geq 2$.
Dehomogenize $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ as $F : \mathbb{A}^2 \to \mathbb{A}^2$, writing $F(x_1, x_2) = (F_1(x_1, x_2), F_2(x_1, x_2))$ with each F_i homogeneous of degree d.
Define
$$\hat{H}_{F,v}(x) = \lim_{d \to \infty} \frac{1}{d^n} \log \max \{|F_1^n(x)|_v, |F_2^n(x)|_v\}.$$

The v-adic dynamical Arakelov-Green function $g_{\phi,v}(x, y)$ on $\mathbb{P}^1(\mathbb{C}_v) \times \mathbb{P}^1(\mathbb{C}_v)$ is
$$g_{\phi,v}((x_1 : x_2), (y_1 : y_2)) = -\log |x_1 y_2 - x_2 y_1|_v + \hat{H}_{F,v}(x) + \hat{H}_{F,v}(y) - \frac{1}{d(d-1)} \log |\text{Res}(F_1, F_2)|_v,$$
Two useful observations

- For ν Archimedean, $g_{\phi,\nu}$ is a normalized Arakelov-Green function for the canonical measure μ_ϕ on $\mathbb{P}^1(\mathbb{C})$.

- By the product formula and the explicit formula for $g_{\phi,\nu}(x, y)$,

$$
\sum_\nu g_{\phi,\nu}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y).
$$
Two useful observations

- For \(\nu \) Archimedean, \(g_{\phi, \nu} \) is a normalized Arakelov-Green function for the canonical measure \(\mu_\phi \) on \(\mathbb{P}^1(\mathbb{C}) \).
- By the product formula and the explicit formula for \(g_{\phi, \nu}(x, y) \),

\[
\sum_{\nu} g_{\phi, \nu}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y).
\]
I first heard about Berkovich spaces in Richard Taylor’s topics course on the Local Langlands Conjecture for GL_n.

I had no idea at the time that Berkovich spaces would change my life! (though I immediately thought they seemed cool).

When I left Harvard for a tenure-track job at UGA, Robert Rumely suggested that Berkovich spaces should be the right tool to clean up my messy theory of non-Archimedean pseudo-equidistribution, and to extend my theorem with Hsia to rational functions.

We spent the next couple of years working out the details...

Antoine Chambert-Loir had the same idea independently...
I first heard about Berkovich spaces in Richard Taylor’s topics course on the Local Langlands Conjecture for GL_n.

I had no idea at the time that Berkovich spaces would change my life! (though I immediately thought they seemed cool).

When I left Harvard for a tenure-track job at UGA, Robert Rumely suggested that Berkovich spaces should be the right tool to clean up my messy theory of non-Archimedean pseudo-equidistribution, and to extend my theorem with Hsia to rational functions.

We spent the next couple of years working out the details. . .

Antoine Chambert-Loir had the same idea independently. . .
I first heard about Berkovich spaces in Richard Taylor’s topics course on the Local Langlands Conjecture for GL_n.

I had no idea at the time that Berkovich spaces would change my life! (though I immediately thought they seemed cool).

When I left Harvard for a tenure-track job at UGA, Robert Rumely suggested that Berkovich spaces should be the right tool to clean up my messy theory of non-Archimedean pseudo-equidistribution, and to extend my theorem with Hsia to rational functions.

We spent the next couple of years working out the details...

Antoine Chambert-Loir had the same idea independently...
I first heard about Berkovich spaces in Richard Taylor’s topics course on the Local Langlands Conjecture for GL_n.

I had no idea at the time that Berkovich spaces would change my life! (though I immediately thought they seemed cool).

When I left Harvard for a tenure-track job at UGA, Robert Rumely suggested that Berkovich spaces should be the right tool to clean up my messy theory of non-Archimedean pseudo-equidistribution, and to extend my theorem with Hsia to rational functions.

We spent the next couple of years working out the details...

Antoine Chambert-Loir had the same idea independently...
I first heard about Berkovich spaces in Richard Taylor’s topics course on the Local Langlands Conjecture for GL_n.

I had no idea at the time that Berkovich spaces would change my life! (though I immediately thought they seemed cool).

When I left Harvard for a tenure-track job at UGA, Robert Rumely suggested that Berkovich spaces should be the right tool to clean up my messy theory of non-Archimedean pseudo-equidistribution, and to extend my theorem with Hsia to rational functions.

We spent the next couple of years working out the details.

Antoine Chambert-Loir had the same idea independently.
Let k be a complete and algebraically closed non-Archimedean valued field.

If V is an irreducible algebraic variety over k, the Berkovich analytic space associated to V is a path-connected, locally compact Hausdorff space V^{an} containing $V(k)$ as a dense subspace.

The construction $V \mapsto V^{\text{an}}$ is functorial.

For an open affine subscheme $U = \text{Spec}(A)$ of V, U^{an} is the space of all bounded multiplicative seminorms on A extending the given absolute value on k (endowed with the topology of pointwise convergence).
Let \(k \) be a complete and algebraically closed non-Archimedean valued field.

If \(V \) is an irreducible algebraic variety over \(k \), the Berkovich analytic space associated to \(V \) is a path-connected, locally compact Hausdorff space \(V^\text{an} \) containing \(V(k) \) as a dense subspace.

The construction \(V \rightsquigarrow V^\text{an} \) is functorial.

For an open affine subscheme \(U = \text{Spec}(A) \) of \(V \), \(U^\text{an} \) is the space of all bounded multiplicative seminorms on \(A \) extending the given absolute value on \(k \) (endowed with the topology of pointwise convergence).
Let k be a complete and algebraically closed non-Archimedean valued field.

If V is an irreducible algebraic variety over k, the Berkovich analytic space associated to V is a path-connected, locally compact Hausdorff space V^{an} containing $V(k)$ as a dense subspace.

The construction $V \mapsto V^{\text{an}}$ is functorial.

For an open affine subscheme $U = \text{Spec}(A)$ of V, U^{an} is the space of all bounded multiplicative seminorms on A extending the given absolute value on k (endowed with the topology of pointwise convergence).
Let k be a complete and algebraically closed non-Archimedean valued field.

If V is an irreducible algebraic variety over k, the Berkovich analytic space associated to V is a path-connected, locally compact Hausdorff space V^{an} containing $V(k)$ as a dense subspace.

The construction $V \rightarrow V^{an}$ is functorial.

For an open affine subscheme $U = \text{Spec}(A)$ of V, U^{an} is the space of all bounded multiplicative seminorms on A extending the given absolute value on k (endowed with the topology of pointwise convergence).
Example: The Berkovich projective line
Example: A Berkovich elliptic curve
Example: A Berkovich K3 surface
Potential theory and dynamics on the Berkovich projective line

- Rumely and I showed that potential theory on trees could be used to do non-Archimedean potential theory on \((\mathbb{P}^1)^{an}\), with results that closely parallel the classical theory of harmonic and subharmonic functions on \(\mathbb{P}^1(\mathbb{C})\) (Poisson formula, Harnack’s principle, Poincaré-Lelong formula, Frostman’s theorem, . . .)

- In particular, the Laplacian on metric graphs can be used to define a Laplacian operator on \((\mathbb{P}^1)^{an}\). If one thinks of a metric graph as a resistive electrical network, non-Archimedean potential theory is intimately related to Kirchhoff’s laws.

- We defined the non-Archimedean canonical measure \(\mu_{\phi,v}\) attached to a rational map \(\phi\) over \(\mathbb{C}_v\) by the formula

\[
\Delta_y g_{\phi,v}(x,y) = \delta_x - \mu_{\phi,v}.
\]
Rumely and I showed that potential theory on trees could be used to do non-Archimedean potential theory on \((\mathbb{P}^1)^{\text{an}} \), with results that closely parallel the classical theory of harmonic and subharmonic functions on \(\mathbb{P}^1(\mathbb{C}) \) (Poisson formula, Harnack’s principle, Poincaré-Lelong formula, Frostman’s theorem,…).

In particular, the Laplacian on metric graphs can be used to define a Laplacian operator on \((\mathbb{P}^1)^{\text{an}} \). If one thinks of a metric graph as a resistive electrical network, non-Archimedean potential theory is intimately related to Kirchhoff’s laws.

We defined the non-Archimedean canonical measure \(\mu_{\phi,v} \) attached to a rational map \(\phi \) over \(\mathbb{C}_v \) by the formula

\[
\Delta_y g_{\phi,v}(x,y) = \delta_x - \mu_{\phi,v}.
\]
Potential theory and dynamics on the Berkovich projective line

- Rumely and I showed that **potential theory on trees** could be used to do non-Archimedean potential theory on \((\mathbb{P}^1)^{an}\), with results that closely parallel the classical theory of harmonic and subharmonic functions on \(\mathbb{P}^1(\mathbb{C})\) (Poisson formula, Harnack’s principle, Poincaré-Lelong formula, Frostman’s theorem, . . .)

- In particular, the Laplacian on metric graphs can be used to define a Laplacian operator on \((\mathbb{P}^1)^{an}\). If one thinks of a metric graph as a resistive electrical network, non-Archimedean potential theory is intimately related to Kirchhoff’s laws.

- We **defined** the non-Archimedean canonical measure \(\mu_{\phi,\nu}\) attached to a rational map \(\phi\) over \(\mathbb{C}_{\nu}\) by the formula

\[
\Delta_y g_{\phi,\nu}(x, y) = \delta_x - \mu_{\phi,\nu}.
\]
Adelic equidistribution for rational functions

Let K be a number field, and let $\phi \in K(z)$ be a rational function of degree $d \geq 2$. For each place v of K, there is a canonical probability measure $\mu_{\phi,v}$ supported on \mathbb{P}^1_v with the following property. Let $P_n \in \mathbb{P}^1(\overline{K})$ be an infinite sequence with $\hat{h}_\phi(P_n) \to 0$. Let δ_n be the probability measure supported equally on the Galois conjugates of P_n. Then δ_n converges weakly to the canonical measure $\mu_{\phi,v}$ on \mathbb{P}^1_v for all places v of K.

The proof uses the product formula

$$\sum_v g_{\phi,v}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y)$$

together with non-Archimedean versions of various classical results on transfinite diameter, capacities, Laplacians, and subharmonic functions.

Let K be a number field, and let $\phi \in K(z)$ be a rational function of degree $d \geq 2$. For each place v of K, there is a canonical probability measure $\mu_{\phi,v}$ supported on \mathbb{P}^1_v with the following property. Let $P_n \in \mathbb{P}^1(\bar{K})$ be an infinite sequence with $\hat{h}_\phi(P_n) \to 0$. Let δ_n be the probability measure supported equally on the Galois conjugates of P_n. Then δ_n converges weakly to the canonical measure $\mu_{\phi,v}$ on \mathbb{P}^1_v for all places v of K.

The proof uses the product formula

$$\sum_v g_{\phi,v}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y)$$

together with non-Archimedean versions of various classical results on transfinite diameter, capacities, Laplacians, and subharmonic functions.

Let K be a number field, and let $\phi \in K(z)$ be a rational function of degree $d \geq 2$. For each place v of K, there is a canonical probability measure $\mu_{\phi,v}$ supported on \mathbb{P}^1_v with the following property. Let $P_n \in \mathbb{P}^1(\bar{K})$ be an infinite sequence with $\hat{h}_\phi(P_n) \to 0$. Let δ_n be the probability measure supported equally on the Galois conjugates of P_n. Then δ_n converges weakly to the canonical measure $\mu_{\phi,v}$ on \mathbb{P}^1_v for all places v of K.

The proof uses the product formula

$$\sum_v g_{\phi,v}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y)$$

together with non-Archimedean versions of various classical results on transfinite diameter, capacities, Laplacians, and subharmonic functions.

Let K be a number field, and let $\phi \in K(z)$ be a rational function of degree $d \geq 2$. For each place v of K, there is a canonical probability measure $\mu_{\phi,v}$ supported on \mathbb{P}_v^1 with the following property. Let $P_n \in \mathbb{P}_v^1(\overline{K})$ be an infinite sequence with $\hat{h}_\phi(P_n) \to 0$. Let δ_n be the probability measure supported equally on the Galois conjugates of P_n. Then δ_n converges weakly to the canonical measure $\mu_{\phi,v}$ on \mathbb{P}_v^1 for all places v of K.

The proof uses the product formula

$$\sum_v g_{\phi,v}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y)$$

together with non-Archimedean versions of various classical results on transfinite diameter, capacities, Laplacians, and subharmonic functions.
Let K be a number field, and let $\phi \in K(z)$ be a rational function of degree $d \geq 2$. For each place v of K, there is a canonical probability measure $\mu_{\phi,v}$ supported on \mathbb{P}^1_v with the following property. Let $P_n \in \mathbb{P}^1(\overline{K})$ be an infinite sequence with $\hat{h}_\phi(P_n) \to 0$. Let δ_n be the probability measure supported equally on the Galois conjugates of P_n. Then δ_n converges weakly to the canonical measure $\mu_{\phi,v}$ on \mathbb{P}^1_v for all places v of K.

The proof uses the product formula

$$\sum_v g_{\phi,v}(x, y) = \hat{h}_\phi(x) + \hat{h}_\phi(y)$$

together with non-Archimedean versions of various classical results on transfinite diameter, capacities, Laplacians, and subharmonic functions.
A sample application

The adelic equidistribution theorem and potential theory on the Berkovich projective line have found many applications in recent years. For example:

Theorem (B.-DeMarco, 2011)

Let $a, b \in \mathbb{C}$ with $a \neq \pm b$. Then the set of $c \in \mathbb{C}$ such that both a and b have finite orbit under $z^2 + c$ is finite.

When a, b are algebraic, we apply the equidistribution theorem in the number field setting. When they are transcendental, we apply it to the function field $\bar{\mathbb{Q}}(a, b)$. In particular, we really need Berkovich spaces to handle the transcendental case!
A sample application

The adelic equidistribution theorem and potential theory on the Berkovich projective line have found many applications in recent years. For example:

Theorem (B.-DeMarco, 2011)

Let \(a, b \in \mathbb{C} \) with \(a \neq \pm b \). Then the set of \(c \in \mathbb{C} \) such that both \(a \) and \(b \) have finite orbit under \(z^2 + c \) is finite.

When \(a, b \) are algebraic, we apply the equidistribution theorem in the number field setting. When they are transcendental, we apply it to the function field \(\overline{\mathbb{Q}}(a, b) \). In particular, we really need Berkovich spaces to handle the transcendental case!
The adelic equidistribution theorem and potential theory on the Berkovich projective line have found many applications in recent years. For example:

Theorem (B.-DeMarco, 2011)

Let $a, b \in \mathbb{C}$ with $a \neq \pm b$. Then the set of $c \in \mathbb{C}$ such that both a and b have finite orbit under $z^2 + c$ is finite.

When a, b are algebraic, we apply the equidistribution theorem in the number field setting. When they are transcendental, we apply it to the function field $\overline{\mathbb{Q}}(a, b)$. In particular, we really need Berkovich spaces to handle the transcendental case!
“Dynamical André–Oort” theorems

A rational map is **post-critically finite** if the forward orbit of every critical point is finite.

- (B.–DeMarco, 2013) For each complex number \(\lambda \), let \(\text{Per}_1(\lambda) \) be the curve (inside the moduli space of cubic polynomials up to conjugacy) parametrizing polynomials with a fixed point of multiplier \(\lambda \). Then \(\text{Per}_1(\lambda) \) contains an infinite number of post-critically finite polynomials if and only if \(\lambda = 0 \).

- (Ghioca–Krieger–Nguyen–Ye, 2015) Let \(C \) be an irreducible plane curve over \(\mathbb{C} \). If there are infinitely many points \((a, b) \in C\) such that both \(z^2 + a \) and \(z^2 + b \) are post-critically finite, then \(C \) is either a horizontal, vertical, or diagonal line.
A rational map is **post-critically finite** if the forward orbit of every critical point is finite.

- (B.–DeMarco, 2013) For each complex number λ, let $\text{Per}_1(\lambda)$ be the curve (inside the moduli space of cubic polynomials up to conjugacy) parametrizing polynomials with a fixed point of multiplier λ. Then $\text{Per}_1(\lambda)$ contains an infinite number of post-critically finite polynomials if and only if $\lambda = 0$.

- (Ghioca–Krieger–Nguyen–Ye, 2015) Let C be an irreducible plane curve over \mathbb{C}. If there are infinitely many points $(a, b) \in C$ such that both $z^2 + a$ and $z^2 + b$ are post-critically finite, then C is either a horizontal, vertical, or diagonal line.
A rational map is **post-critically finite** if the forward orbit of every critical point is finite.

1. (B.-DeMarco, 2013) For each complex number λ, let $\text{Per}_1(\lambda)$ be the curve (inside the moduli space of cubic polynomials up to conjugacy) parametrizing polynomials with a fixed point of multiplier λ. Then $\text{Per}_1(\lambda)$ contains an infinite number of post-critically finite polynomials if and only if $\lambda = 0$.

2. (Ghioca–Krieger–Nguyen–Ye, 2015) Let C be an irreducible plane curve over \mathbb{C}. If there are infinitely many points $(a, b) \in C$ such that both $z^2 + a$ and $z^2 + b$ are post-critically finite, then C is either a horizontal, vertical, or diagonal line.
OK, so what about curves of higher genus?

Amaury Thuillier, a student of Chambert-Loir, developed (independently and at the same time) non-Archimedean potential theory for arbitrary Berkovich curves.

He applies this theory to give a symmetrical version of Arakelov intersection theory for curves in which one is doing potential theory at all places.

Slogan: Intersection theory is non-Archimedean potential theory.

Remark: The first person to develop this slogan (albeit without Berkovich spaces) was Ernst Kani.
OK, so what about curves of higher genus?

Amaury Thuillier, a student of Chambert-Loir, developed (independently and at the same time) non-Archimedean potential theory for arbitrary Berkovich curves.

He applies this theory to give a symmetrical version of Arakelov intersection theory for curves in which one is doing potential theory at all places.

Slogan: Intersection theory is non-Archimedean potential theory.

Remark: The first person to develop this slogan (albeit without Berkovich spaces) was Ernst Kani.
OK, so what about curves of higher genus?

Amaury Thuillier, a student of Chambert-Loir, developed (independently and at the same time) non-Archimedean potential theory for arbitrary Berkovich curves.

He applies this theory to give a symmetrical version of Arakelov intersection theory for curves in which one is doing potential theory at all places.

Slogan: Intersection theory is non-Archimedean potential theory.

Remark: The first person to develop this slogan (albeit without Berkovich spaces) was Ernst Kani.
OK, so what about curves of higher genus?

Amaury Thuillier, a student of Chambert-Loir, developed (independently and at the same time) non-Archimedean potential theory for arbitrary Berkovich curves.

He applies this theory to give a symmetrical version of Arakelov intersection theory for curves in which one is doing potential theory at all places.

Slogan: Intersection theory is non-Archimedean potential theory.

Remark: The first person to develop this slogan (albeit without Berkovich spaces) was Ernst Kani.
OK, so what about curves of higher genus?

- **Amaury Thuillier**, a student of Chambert-Loir, developed (independently and at the same time) non-Archimedean potential theory for arbitrary Berkovich curves.

- He applies this theory to give a symmetrical version of Arakelov intersection theory for curves in which one is doing potential theory at all places.

- **Slogan**: Intersection theory is non-Archimedean potential theory.

- **Remark**: The first person to develop this slogan (albeit without Berkovich spaces) was Ernst Kani.
A simple but illustrative example

As a concrete example, the non-Archimedean Arakelov-Green function on \((\mathbb{P}^1)^{an} \times (\mathbb{P}^1)^{an}\) with respect to a point mass at the Gauss point is

\[
g_v(x, y) = -\log |x_1y_2 - x_2y_1|_v + \log \max(|x_1|_v, |x_2|_v) + \log \max(|y_1|_v, |y_2|_v).
\]

This is precisely the intersection product \(i_v(x, y)\) on the standard model of \(\mathbb{P}^1\) over the valuation ring of \(\mathbb{C}_v\)!
As a concrete example, the non-Archimedean Arakelov-Green function on \((\mathbb{P}^1)^{an} \times (\mathbb{P}^1)^{an}\) with respect to a point mass at the Gauss point is

\[g_v(x, y) = -\log |x_1 y_2 - x_2 y_1|_v + \log \max(|x_1|_v, |x_2|_v) + \log \max(|y_1|_v, |y_2|_v). \]

This is precisely the intersection product \(i_v(x, y)\) on the standard model of \(\mathbb{P}^1\) over the valuation ring of \(\mathbb{C}_v\)!
The non-Archimedean Poincaré-Lelong formula

Theorem (Thuillier)

Let f be a rational function on a curve X over a complete non-Archimedean field k. Then

$$\Delta \log |f| = \delta_{\text{div}(f)}.$$
Reinterpretation in the language of tropical geometry

- For a finite metric subgraph Γ of X^an containing the skeleton, let $\text{Trop}(f)$ denote the restriction of $\log |f|$ to Γ. This is a piecewise-linear function with integer slopes, i.e., a “tropical rational function” on Γ.
- For $D \in \text{Div}(X)$, let $\text{trop}(D)$ denote the retraction of D to Γ. This is a “divisor” on Γ.
- If F is a tropical rational function on Γ, define the associated principal divisor on Γ to be the Laplacian of F, i.e.,
\[
\text{div}(F) := \sum_{p \in \Gamma} \Delta_p(F)(p),
\]
where $\Delta_p(F)$ is the sum of the incoming slopes of F at p.
- Thuillier’s Poincare-Lelong formula is equivalent to the statement that for every such Γ, we have
\[
\text{div}(\text{Trop}(f)) = \text{trop}(\text{div}(f)).
\]
Reinterpretation in the language of tropical geometry

- For a finite metric subgraph Γ of X^{an} containing the skeleton, let $\text{Trop}(f)$ denote the restriction of $\log |f|$ to Γ. This is a piecewise-linear function with integer slopes, i.e., a “tropical rational function” on Γ.
- For $D \in \text{Div}(X)$, let $\text{trop}(D)$ denote the retraction of D to Γ. This is a “divisor” on Γ.
- If F is a tropical rational function on Γ, define the associated principal divisor on Γ to be the Laplacian of F, i.e.,

$$\text{div}(F) := \sum_{p \in \Gamma} \Delta_p(F)(p),$$

where $\Delta_p(F)$ is the sum of the incoming slopes of F at p.
- Thuillier’s Poincare-Lelong formula is equivalent to the statement that for every such Γ, we have

$$\text{div}(\text{Trop}(f)) = \text{trop}(\text{div}(f)).$$
For a finite metric subgraph Γ of X^{an} containing the skeleton, let $\text{Trop}(f)$ denote the restriction of $\log |f|$ to Γ. This is a piecewise-linear function with integer slopes, i.e., a “tropical rational function” on Γ.

For $D \in \text{Div}(X)$, let $\text{trop}(D)$ denote the retraction of D to Γ. This is a “divisor” on Γ.

If F is a tropical rational function on Γ, define the associated principal divisor on Γ to be the Laplacian of F, i.e.,

$$\text{div}(F) := \sum_{p \in \Gamma} \Delta_p(F)(p),$$

where $\Delta_p(F)$ is the sum of the incoming slopes of F at p.

Thuillier’s Poincare-Lelong formula is equivalent to the statement that for every such Γ, we have

$$\text{div}(\text{Trop}(f)) = \text{trop}(\text{div}(f)).$$
Reinterpretation in the language of tropical geometry

- For a finite metric subgraph Γ of X^an containing the skeleton, let $\text{Trop}(f)$ denote the restriction of $\log |f|$ to Γ. This is a piecewise-linear function with integer slopes, i.e., a “tropical rational function” on Γ.
- For $D \in \text{Div}(X)$, let $\text{trop}(D)$ denote the retraction of D to Γ. This is a “divisor” on Γ.
- If F is a tropical rational function on Γ, define the associated principal divisor on Γ to be the Laplacian of F, i.e.,

$$\text{div}(F) := \sum_{p \in \Gamma} \Delta_p(F)(p),$$

where $\Delta_p(F)$ is the sum of the incoming slopes of F at p.
- Thuillier’s Poincare-Lelong formula is equivalent to the statement that for every such Γ, we have

$$\text{div}(\text{Trop}(f)) = \text{trop}(\text{div}(f)).$$
Example: retraction of divisors
The divisor of a tropical rational function

\[f \]

\[P_1 \]

\[P_2 \]

\[P_3 \]

\[P_4 \]

\[P_5 \]
In Shouwu Zhang’s Inventiones paper “Admissible pairing on a curve” (an early attempt to prove the Bogomolov conjecture), he encounters (without naming it this) the canonical divisor on a graph:

$$K_\Gamma = \sum_{p \in \Gamma} (\text{valence}(p) - 2)(v).$$

The degree of K_Γ is $2g - 2$, where g is the genus of Γ, i.e. the dimension of $H_1(\Gamma, \mathbb{R})$.
In Shouwu Zhang’s Inventiones paper “Admissible pairing on a curve” (an early attempt to prove the Bogomolov conjecture), he encounters (without naming it this) the canonical divisor on a graph:

$$K_\Gamma = \sum_{p \in \Gamma} (\text{valence}(p) - 2)(\nu).$$

The degree of K_Γ is $2g - 2$, where g is the genus of Γ, i.e. the dimension of $H_1(\Gamma, \mathbb{R})$.

Zhang’s canonical divisor
Zhang’s canonical divisor

In Shouwu Zhang’s Inventiones paper “Admissible pairing on a curve” (an early attempt to prove the Bogomolov conjecture), he encounters (without naming it this) the canonical divisor on a graph:

\[K_\Gamma = \sum_{p \in \Gamma} (\text{valence}(p) - 2)(v). \]

The degree of \(K_\Gamma \) is \(2g - 2 \), where \(g \) is the genus of \(\Gamma \), i.e. the dimension of \(H_1(\Gamma, \mathbb{R}) \).
We have a notion of principal divisors on a graph, hence of linear equivalence. We also have a canonical divisor and a notion of genus.

Might there be a Riemann-Roch theorem for graphs and/or metric graphs?
We have a notion of principal divisors on a graph, hence of linear equivalence. We also have a canonical divisor and a notion of genus.

Might there be a Riemann-Roch theorem for graphs and/or metric graphs?
Serguei Norine and I proved a Riemann-Roch theorem for finite graphs, which was quickly extended by Gathmann–Kerber and Mikhalkin–Zharkov to a Riemann-Roch theorem for metric graphs / tropical curves.
Serguei Norine and I proved a Riemann-Roch theorem for finite graphs, which was quickly extended by Gathmann–Kerber and Mikhalkin–Zharkov to a Riemann-Roch theorem for metric graphs / tropical curves.
Let Γ be a metric graph.

For $D \in \text{Div}(\Gamma)$, define $r(D)$ to be the largest integer k such that $D - E$ is equivalent to an effective divisor for all effective divisors E of degree k.

For every divisor D on Γ,

$$r(D) - r(K_\Gamma - D) = \deg(D) + 1 - g.$$
Let Γ be a metric graph. For $D \in \text{Div}(\Gamma)$, define $r(D)$ to be the largest integer k such that $D - E$ is equivalent to an effective divisor for all effective divisors E of degree k.

For every divisor D on Γ,

$$r(D) - r(K_\Gamma - D) = \deg(D) + 1 - g.$$
Let Γ be a metric graph. For $D \in \text{Div}(\Gamma)$, define $r(D)$ to be the largest integer k such that $D - E$ is equivalent to an effective divisor for all effective divisors E of degree k.

For every divisor D on Γ,

$$r(D) - r(K_\Gamma - D) = \deg(D) + 1 - g.$$
Shortly after establishing the Riemann-Roch theorem, I noticed that the combinatorial rank $r(D)$ has the following semicontinuity property:

Lemma (B.)

Let X be an algebraic curve over a complete non-Archimedean field k. For every finite subgraph Γ of X^{an},

$$r_{\Gamma}(\text{trop}(D)) \geq r_X(D).$$

I began to wonder whether this result might have some applications to classical algebraic geometry...
Shortly after establishing the Riemann-Roch theorem, I noticed that the combinatorial rank \(r(D) \) has the following semicontinuity property:

Lemma (B.)

Let \(X \) be an algebraic curve over a complete non-Archimedean field \(k \). For every finite subgraph \(\Gamma \) of \(X^{\text{an}} \),

\[
r_{\Gamma}(\text{trop}(D)) \geq r_X(D).
\]

I began to wonder whether this result might have some applications to classical algebraic geometry...
Shortly after establishing the Riemann-Roch theorem, I noticed that the combinatorial rank $r(D)$ has the following semicontinuity property:

Lemma (B.)

Let X be an algebraic curve over a complete non-Archimedean field k. For every finite subgraph Γ of X^{an},

$$r_{\Gamma}(\text{trop}(D)) \geq r_{X}(D).$$

I began to wonder whether this result might have some applications to classical algebraic geometry...
At Harvard, I sat in on Joe Harris’s Second Course in Algebraic Geometry and learned about the proof of the following result known as the **Brill-Noether theorem** and due originally to Griffiths and Harris:

Theorem (Griffiths-Harris, Eisenbud-Harris, Lazarsfeld,...)

Given nonnegative integers g, r, d, define $\rho := g - (r + 1)(g - d + r)$. If X is a nonsingular projective curve of genus g, define $W^r_d(X)$ to be the variety parametrizing line bundles L of degree d on X with $h^0(L) \geq r + 1$. Then for a general nonsingular projective curve X of genus g, $W^r_d(X)$ has dimension ρ if $\rho \geq 0$, and is empty if $\rho < 0$.

The proof, which Joe Harris explained in his class, uses a brilliant idea that goes back to Castelnuovo: Since $\dim W^r_d(X)$ is upper semicontinuous on \overline{M}_g, to show the statement for a general smooth curve of genus g it suffices to prove it for a single stable curve of genus g.
At Harvard, I sat in on Joe Harris’s Second Course in Algebraic Geometry and learned about the proof of the following result known as the
Brill-Noether theorem and due originally to Griffiths and Harris:

Theorem (Griffiths-Harris, Eisenbud-Harris, Lazarsfeld,...)

Given nonnegative integers g, r, d, define $\rho := g - (r + 1)(g - d + r)$. If X is a nonsingular projective curve of genus g, define $W_d^r(X)$ to be the variety parametrizing line bundles L of degree d on X with $h^0(L) \geq r + 1$. Then for a general nonsingular projective curve X of genus g, $W_d^r(X)$ has dimension ρ if $\rho \geq 0$, and is empty if $\rho < 0$.

The proof, which Joe Harris explained in his class, uses a brilliant idea that goes back to Castelnuovo: Since $\dim W_d^r(X)$ is upper semicontinuous on \overline{M}_g, to show the statement for a general smooth curve of genus g it suffices to prove it for a single stable curve of genus g.
At Harvard, I sat in on Joe Harris’s Second Course in Algebraic Geometry and learned about the proof of the following result known as the Brill-Noether theorem and due originally to Griffiths and Harris:

Theorem (Griffiths-Harris, Eisenbud-Harris, Lazarsfeld, . . .)

Given nonnegative integers \(g, r, d, \) define \(\rho := g - (r + 1)(g - d + r) \).

If \(X \) is a nonsingular projective curve of genus \(g \), define \(W_d^r(\mathcal{X}) \) to be the variety parametrizing line bundles \(\mathcal{L} \) of degree \(d \) on \(X \) with \(h^0(\mathcal{L}) \geq r + 1 \).

Then for a general nonsingular projective curve \(X \) of genus \(g \), \(W_d^r(\mathcal{X}) \) has dimension \(\rho \) if \(\rho \geq 0 \), and is empty if \(\rho < 0 \).

The proof, which Joe Harris explained in his class, uses a brilliant idea that goes back to Castelnuovo:

Since \(\dim W_d^r(\mathcal{X}) \) is upper semicontinuous on \(\overline{M}_g \), to show the statement for a general smooth curve of genus \(g \) it suffices to prove it for a single stable curve of genus \(g \).
At Harvard, I sat in on Joe Harris’s Second Course in Algebraic Geometry and learned about the proof of the following result known as the **Brill-Noether theorem** and due originally to Griffiths and Harris:

Theorem (Griffiths-Harris, Eisenbud-Harris, Lazarsfeld, . . .)

Given nonnegative integers g, r, d, define $\rho := g - (r + 1)(g - d + r)$.

*If X is a nonsingular projective curve of genus g, define $W_d^r(X)$ to be the variety parametrizing line bundles \mathcal{L} of degree d on X with $h^0(\mathcal{L}) \geq r + 1$. Then for a general nonsingular projective curve X of genus g, $W_d^r(X)$ has dimension ρ if $\rho \geq 0$, and is empty if $\rho < 0$.**

The proof, which Joe Harris explained in his class, uses a brilliant idea that goes back to Castelnuovo: Since $\dim W_d^r(X)$ is upper semicontinuous on $\overline{\mathcal{M}}_g$, to show the statement for a general smooth curve of genus g it suffices to prove it for a single stable curve of genus g.
Brill-Noether theory

At Harvard, I sat in on Joe Harris’s Second Course in Algebraic Geometry and learned about the proof of the following result known as the Brill-Noether theorem and due originally to Griffiths and Harris:

Theorem (Griffiths-Harris, Eisenbud-Harris, Lazarsfeld, . . .)

Given nonnegative integers g, r, d, define $\rho := g - (r + 1)(g - d + r)$. If X is a nonsingular projective curve of genus g, define $W_d^r(X)$ to be the variety parametrizing line bundles \mathcal{L} of degree d on X with $h^0(\mathcal{L}) \geq r + 1$. Then for a general nonsingular projective curve X of genus g, $W_d^r(X)$ has dimension ρ if $\rho \geq 0$, and is empty if $\rho < 0$.

The proof, which Joe Harris explained in his class, uses a brilliant idea that goes back to Castelnuovo:

Since $\dim W_d^r(X)$ is upper semicontinuous on $\overline{\mathcal{M}}_g$, to show the statement for a general smooth curve of genus g it suffices to prove it for a single stable curve of genus g.
At Harvard, I sat in on Joe Harris’s Second Course in Algebraic Geometry and learned about the proof of the following result known as the Brill-Noether theorem and due originally to Griffiths and Harris:

Theorem (Griffiths-Harris, Eisenbud-Harris, Lazarsfeld, . . .)

Given nonnegative integers g, r, d, define $\rho := g - (r + 1)(g - d + r)$. If X is a nonsingular projective curve of genus g, define $W_d^r(X)$ to be the variety parametrizing line bundles \mathcal{L} of degree d on X with $h^0(\mathcal{L}) \geq r + 1$. Then for a general nonsingular projective curve X of genus g, $W_d^r(X)$ has dimension ρ if $\rho \geq 0$, and is empty if $\rho < 0$.

The proof, which Joe Harris explained in his class, uses a brilliant idea that goes back to Castelnuovo: Since $\dim W_d^r(X)$ is upper semicontinuous on \overline{M}_g, to show the statement for a general smooth curve of genus g it suffices to prove it for a single stable curve of genus g.
A rational backbone with g elliptic tails
A tropical approach to degenerating linear series

- In 2008 I conjectured a tropical analogue of the Brill-Noether theorem. The conjecture was motivated by extensive computational evidence from my summer REU student Adam Tart.

- I also proved that this purely combinatorial conjecture would imply the classical Brill-Noether Theorem.

- My conjecture was proved by Cools, Draisma, Payne, and Robeva in a very explicit way:

Theorem (CDPR, 2012)

If $\rho := g - (r + 1)(g - d + r) < 0$, then for the metric graph Γ consisting of a chain of g loops with general edge lengths, there is no divisor of degree d and rank at least r on Γ.
In 2008 I conjectured a tropical analogue of the Brill-Noether theorem. The conjecture was motivated by extensive computational evidence from my summer REU student Adam Tart.

I also proved that this purely combinatorial conjecture would imply the classical Brill-Noether Theorem.

My conjecture was proved by Cools, Draisma, Payne, and Robeva in a very explicit way:

Theorem (CDPR, 2012)

If \(\rho := g - (r + 1)(g - d + r) < 0 \), then for the metric graph \(\Gamma \) consisting of a chain of \(g \) loops with general edge lengths, there is no divisor of degree \(d \) and rank at least \(r \) on \(\Gamma \).
A tropical approach to degenerating linear series

- In 2008 I conjectured a tropical analogue of the Brill-Noether theorem. The conjecture was motivated by extensive computational evidence from my summer REU student Adam Tart.
- I also proved that this purely combinatorial conjecture would imply the classical Brill-Noether Theorem.
- My conjecture was proved by Cools, Draisma, Payne, and Robeva in a very explicit way:

Theorem (CDPR, 2012)

If $\rho := g - (r + 1)(g - d + r) < 0$, then for the metric graph Γ consisting of a chain of g loops with general edge lengths, there is no divisor of degree d and rank at least r on Γ.
In 2008 I conjectured a tropical analogue of the Brill-Noether theorem. The conjecture was motivated by extensive computational evidence from my summer REU student Adam Tart.

I also proved that this purely combinatorial conjecture would imply the classical Brill-Noether Theorem.

My conjecture was proved by Cools, Draisma, Payne, and Robeva in a very explicit way:

Theorem (CDPR, 2012)

If \(\rho := g - (r + 1)(g - d + r) < 0 \), then for the metric graph \(\Gamma \) consisting of a chain of \(g \) loops with general edge lengths, there is no divisor of degree \(d \) and rank at least \(r \) on \(\Gamma \).
A chain of g loops
Eisenbud and Harris settled a number of longstanding open problems with their theory of limit linear series. However, their theory only applies to a rather restricted class of singular curves, namely those of compact type (i.e., nodal curves whose dual graph is a tree).

Our approach is more or less orthogonal to the Eisenbud-Harris theory, in that it works best in families which are maximally degenerate, meaning that the dual graph of the special fiber has genus equal to the genus of the generic fiber.
Eisenbud and Harris settled a number of longstanding open problems with their theory of limit linear series. However, their theory only applies to a rather restricted class of singular curves, namely those of compact type (i.e., nodal curves whose dual graph is a tree).

Our approach is more or less orthogonal to the Eisenbud-Harris theory, in that it works best in families which are maximally degenerate, meaning that the dual graph of the special fiber has genus equal to the genus of the generic fiber.
Eisenbud and Harris settled a number of longstanding open problems with their theory of limit linear series. However, their theory only applies to a rather restricted class of singular curves, namely those of compact type (i.e., nodal curves whose dual graph is a tree).

Our approach is more or less orthogonal to the Eisenbud-Harris theory, in that it works best in families which are maximally degenerate, meaning that the dual graph of the special fiber has genus equal to the genus of the generic fiber.
Other applications of the combinatorics of chains of loops

In just the last year, generic chains of loops have been used to prove the following:

- (Jensen–Payne, 2015) [Maximal Rank Conjecture for Quadrics] If X is a general curve of genus g and \mathcal{L} is a general line bundle of degree d and rank r on X, then the natural map $\text{Sym}^2 H^0(X, \mathcal{L}) \to H^0(X, \mathcal{L}^\otimes 2)$ has maximal rank, i.e., it is either injective or surjective.

- (Pflueger, 2016) [Brill–Noether theory for k-gonal curves] For $r > 0$ and $g - d + r > 1$, a general smooth projective k-gonal curve X of genus g has $\dim W_d^r(X) = \rho$ if and only if $g - k \leq d - 2r$.

- (Jensen–Len, 2016) [Surjectivity of Gaussian maps] Fix nonnegative integers s and ρ. Then for r sufficiently large, if X is a general curve of genus $g := \rho + rs$ and \mathcal{L} is a general degree d line bundle on X with $h^0(X, \mathcal{L}) = r + 1$ and $h^1(X, \mathcal{L}) = s + 1$, the Gaussian–Wahl map $\wedge^2 H^0(X, \mathcal{L}) \to H^0(K_X \otimes \mathcal{L}^\otimes 2)$, $f \wedge g \mapsto fdg - gdf$ is surjective.
Other applications of the combinatorics of chains of loops

In just the last year, generic chains of loops have been used to prove the following:

- (Jensen–Payne, 2015) [Maximal Rank Conjecture for Quadrics] If X is a general curve of genus g and \mathcal{L} is a general line bundle of degree d and rank r on X, then the natural map $\text{Sym}^2 H^0(X, \mathcal{L}) \to H^0(X, \mathcal{L} \otimes 2)$ has maximal rank, i.e., it is either injective or surjective.

- (Pflueger, 2016) [Brill–Noether theory for k-gonal curves] For $r > 0$ and $g - d + r > 1$, a general smooth projective k-gonal curve X of genus g has $\dim W_d^r(X) = \rho$ if and only if $g - k \leq d - 2r$.

- (Jensen–Len, 2016) [Surjectivity of Gaussian maps] Fix nonnegative integers s and ρ. Then for r sufficiently large, if X is a general curve of genus $g := \rho + rs$ and \mathcal{L} is a general degree d line bundle on X with $h^0(X, \mathcal{L}) = r + 1$ and $h^1(X, \mathcal{L}) = s + 1$, the Gaussian–Wahl map $\wedge^2 H^0(X, \mathcal{L}) \to H^0(K_X \otimes \mathcal{L} \otimes 2)$, $f \wedge g \mapsto fdg - gdf$ is surjective.
Other applications of the combinatorics of chains of loops

In just the last year, generic chains of loops have been used to prove the following:

- (Jensen–Payne, 2015) [Maximal Rank Conjecture for Quadrics] If X is a general curve of genus g and \mathcal{L} is a general line bundle of degree d and rank r on X, then the natural map $\text{Sym}^2 H^0(X, \mathcal{L}) \to H^0(X, \mathcal{L} \otimes \mathcal{L}^2)$ has maximal rank, i.e., it is either injective or surjective.

- (Pflueger, 2016) [Brill–Noether theory for k-gonal curves] For $r > 0$ and $g - d + r > 1$, a general smooth projective k-gonal curve X of genus g has $\dim W^r_d(X) = \rho$ if and only if $g - k \leq d - 2r$.

- (Jensen–Len, 2016) [Surjectivity of Gaussian maps] Fix nonnegative integers s and ρ. Then for r sufficiently large, if X is a general curve of genus $g := \rho + rs$ and \mathcal{L} is a general degree d line bundle on X with $h^0(X, \mathcal{L}) = r + 1$ and $h^1(X, \mathcal{L}) = s + 1$, the Gaussian–Wahl map $\wedge^2 H^0(X, \mathcal{L}) \to H^0(K_X \otimes \mathcal{L} \otimes \mathcal{L}^2)$, $f \wedge g \mapsto fdg - gdf$ is surjective.
Other applications of the combinatorics of chains of loops

In just the last year, generic chains of loops have been used to prove the following:

1. (Jensen–Payne, 2015) [Maximal Rank Conjecture for Quadrics] If X is a general curve of genus g and \mathcal{L} is a general line bundle of degree d and rank r on X, then the natural map $\text{Sym}^2 H^0(X, \mathcal{L}) \to H^0(X, \mathcal{L} \otimes^2)$ has maximal rank, i.e., it is either injective or surjective.

2. (Pflueger, 2016) [Brill–Noether theory for k-gonal curves] For $r > 0$ and $g - d + r > 1$, a general smooth projective k-gonal curve X of genus g has $\dim W_d^r(X) = \rho$ if and only if $g - k \leq d - 2r$.

3. (Jensen–Len, 2016) [Surjectivity of Gaussian maps] Fix nonnegative integers s and ρ. Then for r sufficiently large, if X is a general curve of genus $g := \rho + rs$ and \mathcal{L} is a general degree d line bundle on X with $h^0(X, \mathcal{L}) = r + 1$ and $h^1(X, \mathcal{L}) = s + 1$, the Gaussian–Wahl map $\wedge^2 H^0(X, \mathcal{L}) \to H^0(K_X \otimes \mathcal{L} \otimes^2)$, $f \wedge g \mapsto fdg - gdf$ is surjective.
Linear series on metric graphs also play a key role in the proofs of the following two recent breakthroughs in number theory:

Theorem (Katz–Zureick-Brown, 2013)

Let X be a curve of genus g over \mathbb{Q} and suppose that the Mordell–Weil rank r of $J(\mathbb{Q})$ is less than g. Then for every prime $p > 2r + 2$, we have

$$\#X(\mathbb{Q}) \leq \#\mathfrak{X}_{\text{sm}}(\mathbb{F}_p) + 2r,$$

where \mathfrak{X} denotes the minimal proper regular model of X over \mathbb{Z}_p.

Theorem (Katz–Rabinoff–Zureick-Brown, 2015)

There is an explicit bound $M(g) = 76g^2 - 82g + 22$ such that if X/\mathbb{Q} is a curve of genus g with Mordell-Weil rank at most $g - 3$, then

$$\#X(\mathbb{Q}) \leq M(g).$$
Linear series on metric graphs also play a key role in the proofs of the following two recent breakthroughs in number theory:

Theorem (Katz–Zureick-Brown, 2013)

Let X be a curve of genus g over \mathbb{Q} and suppose that the Mordell–Weil rank r of $J(\mathbb{Q})$ is less than g. Then for every prime $p > 2r + 2$, we have

$$\#X(\mathbb{Q}) \leq \#X^{\text{sm}}(\mathbb{F}_p) + 2r,$$

where X denotes the minimal proper regular model of X over \mathbb{Z}_p.

Theorem (Katz–Rabinoff–Zureick-Brown, 2015)

There is an explicit bound $M(g) = 76g^2 - 82g + 22$ such that if X/\mathbb{Q} is a curve of genus g with Mordell-Weil rank at most $g - 3$, then $\#X(\mathbb{Q}) \leq M(g)$.
Coming full-circle: Applications to number theory

Linear series on metric graphs also play a key role in the proofs of the following two recent breakthroughs in number theory:

Theorem (Katz–Zureick-Brown, 2013)

Let X be a curve of genus g over \mathbb{Q} and suppose that the Mordell–Weil rank r of $J(\mathbb{Q})$ is less than g. Then for every prime $p > 2r + 2$, we have

$$\#X(\mathbb{Q}) \leq \#X^\text{sm}(\mathbb{F}_p) + 2r,$$

where X denotes the minimal proper regular model of X over \mathbb{Z}_p.

Theorem (Katz–Rabinoff–Zureick-Brown, 2015)

There is an explicit bound $M(g) = 76g^2 - 82g + 22$ such that if X/\mathbb{Q} is a curve of genus g with Mordell-Weil rank at most $g - 3$, then $\#X(\mathbb{Q}) \leq M(g)$.